Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons.
View Article and Find Full Text PDFThe neuropeptide Substance P (SP), expressed by nociceptive sensory afferents in joints, plays an important role in the pathogenesis of arthritis. Capsaicin causes neurons in the dorsal root ganglia (DRG) to release SP from their central and peripheral axons, suggesting a functional link between SP and the capsaicin receptor, the transient receptor potential vanilloid 1 (TRPV1). The expression of both TRPV1 and SP have been reported to increase in several models of arthritis but the specific involvement of TRPV1-expressing articular afferents that can release SP is not completely understood.
View Article and Find Full Text PDFAlthough activation of spinal glia has been implicated in the development of pathological pain, the mechanisms underlying glial activation are not fully understood. One such mechanism may be triggered by reaction to neuroactive substances released from central axons of sensory afferents. The vanilloid receptor TRPV1, a nonselective cation channel in nociceptive sensory afferents, mediates the release of neurotransmitters, such as glutamate and CGRP in the dorsal horn, which can subsequently activate glia.
View Article and Find Full Text PDFThe neuropeptide calcitonin gene-related peptide (CGRP), expressed by nociceptive sensory afferents in joints, is an important mediator in the pathogenesis of arthritis. Capsaicin causes neurons in the dorsal root ganglia (DRG) to release CGRP from their central and/or peripheral axons, suggesting a functional link between CGRP and the capsaicin receptor TRPV1. The expression of both TRPV1 and CGRP have been reported to increase in several models of arthritis but the specific involvement of TRPV1-expressing articular afferents that can release CGRP remains unclear.
View Article and Find Full Text PDFTwo distinct classes of nociceptive primary afferents, peptidergic and non-peptidergic, respond similarly to acute noxious stimulation; however the peptidergic afferents are more likely to play a role in inflammatory pain, while the non-peptidergic afferents may be more characteristically involved in neuropathic pain. Using multiple immunofluorescence, we determined the proportions of neurons in the rat L4 dorsal root ganglion (DRG) that co-express AMPA or NMDA glutamate receptors and markers for the peptidergic and non-peptidergic classes of primary afferents, substance P and P2X(3), respectively. The fraction of DRG neurons immunostained for the NR1 subunit of the NMDA receptor (40%) was significantly higher than that of DRG neurons immunostained for the GluR2/3 (27%) or the GluR4 (34%) subunits of the AMPA receptor.
View Article and Find Full Text PDFTRPV1, a cation channel on sensory nerves sensitive to heat and capsaicin, plays an important role in the transduction of noxious stimuli to the spinal cord. It is expressed by neurons in dorsal root ganglia (DRG) that may also express neuropeptides, which are important for the development of inflammation. Mice with genetic deletion of TRPV1 have been used to study the involvement of this receptor in the mediation of pain and inflammation in animal models of arthritis.
View Article and Find Full Text PDFExperience-dependent changes in the structure of dendritic spines may contribute to learning and memory. Encoded by three genes, the Shank family of postsynaptic scaffold proteins are abundant and enriched in the postsynaptic density (PSD) of central excitatory synapses. When expressed in cultured hippocampal neurons, Shank promotes the maturation and enlargement of dendritic spines.
View Article and Find Full Text PDFPresynaptic ionotropic glutamate receptors are increasingly attributed a role in the modulation of sensory input at the first synapse of dorsal root ganglion (DRG) neurons in the spinal dorsal horn. Central terminals of DRG neurons express AMPA and NMDA receptors whose activation modulates the release of glutamate, the main transmitter at these synapses. Previous work, with an antibody that recognizes all low-affinity kainate receptor subunits (GluR5, 6, 7), provided microscopic evidence of presynaptic kainate receptors in unidentified primary afferent terminals in superficial laminae of the spinal dorsal horn (Hwang SJ, Pagliardini S, Rustioni A, Valtschanoff JG.
View Article and Find Full Text PDFThe rat urinary bladder is innervated by neurons in dorsal root ganglia (DRG) that express the neuropeptides calcitonin gene-related peptide (CGRP) and substance P (SP), and a fraction of bladder afferents can bind the non-peptidergic marker isolectin B4 (IB4). We used histochemical binding and axonal tracing to identify the bladder afferents, and immunocytochemistry to determine the degree of colocalization of CGRP with IB4 in their cell bodies in DRG and in their central axons in the spinal cord. In the L6 DRG, about 60% of CGRP-positive neurons were also positive for IB4.
View Article and Find Full Text PDFA combination of tracing and multiple color immunofluorescence revealed that 69% of rat dorsal root ganglion (DRG) neurons innervating the urinary bladder expressed the vanilloid receptor TRPV1. In contrast, only 32% of DRG neurons innervating the skin of the L6 dermatome expressed TRPV1. However, a similar fraction of visceral (60-62%) and of cutaneous (59-60%) TRPV1-positive DRG neurons expressed the peptidergic markers substance P and calcitonin gene-related peptide, while the fraction of TRPV1-positive neurons that was labeled by the non-peptidergic marker Isolectin B4 was 58% for cutaneous and only 24% for visceral afferents.
View Article and Find Full Text PDFIonotropic glutamate receptors (IGR), including NMDA, AMPA, and kainate receptors, are expressed in terminals with varied morphology in the superficial laminae (I-III) of the dorsal horn of the spinal cord. Some of these terminals can be identified as endings of primary afferents, whereas others establish symmetric synapses, suggesting that they may be gamma-aminobutyric acid (GABA)-ergic. In the present study, we used confocal and electron microscopy of double immunostaining for GAD65, a marker for GABAergic terminals, and for subunits of IGRs to test directly whether IGRs are expressed in GABAergic terminals in laminae I-III of the dorsal horn.
View Article and Find Full Text PDFThe vanilloid receptor VR1 (TRPV1) is a temperature- and capsaicin-sensitive cation channel expressed by a class of primary afferents involved in nociception. To confirm the hypothesis that VR1-positive primary afferents are glutamatergic and contact spinal neurons that express the main classes of ionotropic glutamate receptors, we performed multiple immunofluorescent staining for VR1 and the glutamate transporter VGLUT2 (a specific marker for glutamatergic transmission) or AMPA and NMDA receptor subunits. VR1-positive cells in the dorsal root ganglion and boutons of their central afferent fibers in the dorsal horn expressed VGLUT2, and the latter contacted AMPA- or NMDA receptor-positive perikarya.
View Article and Find Full Text PDFLittle is known about the central projection patterns of trigeminal afferent neurons expressing the vanilloid receptor TRPV1 and their coexpression of neuromodulatory peptides. To address these issues, we examined the distribution of TRPV1-positive neurons in the trigeminal ganglion (TG) and trigeminal sensory nuclei principalis (Vp), oralis (Vo), interpolaris (Vi), and caudalis (Vc) in the rat via light and electron microscopy. In addition, we studied the colocalization of TRPV1-positive neurons with substance P (SP) and calcitonin gene-related peptide (CGRP) via confocal microscopy.
View Article and Find Full Text PDFAstrocytes respond to injury of the CNS with a dramatic change in morphology, contributing to the formation of a glial scar. We recently identified a novel actin-associated protein named palladin, which possesses the features of a potent cytoskeletal scaffold. Palladin expression was assayed in two populations of cultured astrocytes, polygonal versus stellate, and was detected at high levels in polygonal astrocytes and low levels in stellate astrocytes.
View Article and Find Full Text PDFNeuregulin (NRG) regulates synapse formation and synaptic plasticity, but little is known about the regulation of NRG signaling at synapses. Here we show that the NRG receptor ErbB4 was localized in anatomically defined postsynaptic densities in the brain. In cultured cortical neurons, ErbB4 was recruited to the neuronal lipid raft fraction after stimulation by NRG.
View Article and Find Full Text PDFNeurons in rat superficial dorsal horn that express neurokinin receptor 1 (NK1), a receptor for substance P, play a critical role in the development of hyperalgesia. Thermal hyperalgesia is dramatically reduced after ablation of these neurons, but, paradoxically, not in mice that lack the NK1 receptor (Mantyh et al. [1997] Science 278:275-279).
View Article and Find Full Text PDFPresynaptic N-methyl-D-aspartate (NMDA) receptors in terminals of primary afferents to spinal cord of rats were first reported by Liu et al. (1994; Proc. Natl.
View Article and Find Full Text PDFLiprin-alpha is a multidomain protein that interacts with the LAR family of receptor protein tyrosine phosphatases and the GRIP/ABP family of AMPA receptor-interacting proteins. Previous studies have indicated that liprin-alpha regulates the development of presynaptic active zones and that the association of liprin-alpha with GRIP is required for postsynaptic targeting of AMPA receptors. However, the underlying molecular mechanisms are not well understood.
View Article and Find Full Text PDFLiprin-alpha/SYD-2 is a multimodular scaffolding protein important for presynaptic differentiation and postsynaptic targeting of alpha-amino-3-hydroxy-5-methyl-4-isoxazoleproprionic acid glutamate receptors. However, the molecular mechanisms underlying these functions remain largely unknown. Here we report that liprin-alpha interacts with the neuron-specific kinesin motor KIF1A.
View Article and Find Full Text PDFLarger dorsal root ganglion neurons are stained by an antibody for the C terminus of glutamate receptor subunit 2 (GluR2) and GluR3 (GluR2/3) rather than by an antibody for GluR4. In dorsal roots, anti-GluR2/3 stains predominantly myelinated fibers; anti-GluR4 or anti-GluR2/4 stains predominantly unmyelinated fibers. In the dorsal horn, puncta immunopositive for synaptophysin and GluR2/3 are predominantly in laminas III and IV, whereas puncta immunopositive for synaptophysin and GluR4 or GluR2/4 are predominantly in laminas I and II.
View Article and Find Full Text PDFFunctional evidence suggests that nitric oxide released from CA1 pyramidal cells can act as a retrograde messenger to mediate hippocampal long-term potentiation, but the failure to find neuronal nitric oxide synthase (NOS-I) in the dendritic spines of these cells has cast doubt on this suggestion. We hypothesized that NOS-I may be in spines but in a form inaccessible to antibody when using standard histological fixation procedures. Supporting this hypothesis, we found that after a weak fixation protocol shown previously to enhance staining of synaptic proteins, CA1 pyramidal cells exhibit clear immunoreactivity for NOS-I.
View Article and Find Full Text PDFInteraction with the multi-PDZ protein GRIP is required for the synaptic targeting of AMPA receptors, but the underlying mechanism is unknown. We show that GRIP binds to the liprin-alpha/SYD2 family of proteins that interact with LAR receptor protein tyrosine phosphatases (LAR-RPTPs) and that are implicated in presynaptic development. In neurons, liprin-alpha and LAR-RPTP are enriched at synapses and coimmunoprecipitate with GRIP and AMPA receptors.
View Article and Find Full Text PDF