Advancements in next-generation sequencing and other -omics technologies are accelerating the detailed molecular characterization of individual patient tumors, and driving the evolution of precision medicine. Cancer is no longer considered a single disease, but rather, a diverse array of diseases wherein each patient has a unique collection of germline variants and somatic mutations. Molecular profiling of patient-derived samples has led to a data explosion that could help us understand the contributions of environment and germline to risk, therapeutic response, and outcome.
View Article and Find Full Text PDFThe cancer Nanotechnology Laboratory (caNanoLab) data portal is an online nanomaterial database that allows users to submit and retrieve information on well-characterized nanomaterials, including composition, in vitro and in vivo experimental characterizations, experimental protocols, and related publications. Initiated in 2006, caNanoLab serves as an established resource with an infrastructure supporting the structured collection of nanotechnology data to address the needs of the cancer biomedical and nanotechnology communities. The portal contains over 1,000 curated nanomaterial data records that are publicly accessible for review, comparison, and re-use, with the ultimate goal of accelerating the translation of nanotechnology-based cancer therapeutics, diagnostics, and imaging agents to the clinic.
View Article and Find Full Text PDFThe use of nanotechnology in biomedicine involves the engineering of nanomaterials to act as therapeutic carriers, targeting agents and diagnostic imaging devices. The application of nanotechnology in cancer aims to transform early detection, targeted therapeutics and cancer prevention and control. To assist in expediting and validating the use of nanomaterials in biomedicine, the National Cancer Institute (NCI) Center for Biomedical Informatics and Information Technology, in collaboration with the NCI Alliance for Nanotechnology in Cancer (Alliance), has developed a data sharing portal called caNanoLab.
View Article and Find Full Text PDFBackground And Motivation: The high-throughput genomics communities have been successfully using standardized spreadsheet-based formats to capture and share data within labs and among public repositories. The nanomedicine community has yet to adopt similar standards to share the diverse and multi-dimensional types of data (including metadata) pertaining to the description and characterization of nanomaterials. Owing to the lack of standardization in representing and sharing nanomaterial data, most of the data currently shared via publications and data resources are incomplete, poorly-integrated, and not suitable for meaningful interpretation and re-use of the data.
View Article and Find Full Text PDFObjective: Meaningful exchange of information is a fundamental challenge in collaborative biomedical research. To help address this, the authors developed the Life Sciences Domain Analysis Model (LS DAM), an information model that provides a framework for communication among domain experts and technical teams developing information systems to support biomedical research. The LS DAM is harmonized with the Biomedical Research Integrated Domain Group (BRIDG) model of protocol-driven clinical research.
View Article and Find Full Text PDFWiley Interdiscip Rev Nanomed Nanobiotechnol
June 2015
There are several issues to be addressed concerning the management and effective use of information (or data), generated from nanotechnology studies in biomedical research and medicine. These data are large in volume, diverse in content, and are beset with gaps and ambiguities in the description and characterization of nanomaterials. In this work, we have reviewed three areas of nanomedicine informatics: information resources; taxonomies, controlled vocabularies, and ontologies; and information standards.
View Article and Find Full Text PDFMotivation: Business Architecture Models (BAMs) describe what a business does, who performs the activities, where and when activities are performed, how activities are accomplished and which data are present. The purpose of a BAM is to provide a common resource for understanding business functions and requirements and to guide software development. The cancer Biomedical Informatics Grid (caBIG®) Life Science BAM (LS BAM) provides a shared understanding of the vocabulary, goals and processes that are common in the business of LS research.
View Article and Find Full Text PDF