Publications by authors named "Jules Thibault"

The time-lag method is the standard approach for evaluating membrane permeability, diffusivity and solubility in a single gas permeation experiment. The conventional time-lag method relies on accurately monitoring the pressure rise in a constant volume downstream from the membrane following a change in pressure upstream from the membrane. The same information could be extracted from the upstream pressure decay in the same time-lag experiment.

View Article and Find Full Text PDF

Chemical warfare agents that are liquids with low vapor pressure pose a contact hazard to anyone who encounters them. Personal protective equipment (PPE) is utilized to ensure safe interaction with these agents. A commonly used method to characterize the permeability of PPE towards chemical weapons is to apply droplets of the liquid agent to the surface of the material and measure for chemical breakthrough.

View Article and Find Full Text PDF

The use of mixed matrix membranes (MMMs) to facilitate the production of biofuels has attracted significant research interest in the field of renewable energy. In this study, the pervaporation separation of butanol from aqueous solutions was studied using a series of MMMs, including zeolitic imidazolate frameworks (ZIF-8)-polydimethylsiloxane (PDMS) and zinc oxide-PDMS mixed matrix membranes. Although several studies have reported that mixed matrix membranes incorporating ZIF-8 nanoparticles showed improved pervaporation performances attributed to their intrinsic microporosity and high specific surface area, an in-depth study on the role of ZIF-8 nanoparticle size in MMMs has not yet been reported.

View Article and Find Full Text PDF

Recent years have seen the explosive development of mixed-matrix membranes (MMMs) for a myriad of applications. In gas separation, it is desired to concurrently enhance the permeability, selectivity and physicochemical properties of the membrane. To help achieving these objectives, experimental characterization and predictive models can be used synergistically.

View Article and Find Full Text PDF

Membrane-based processes are considered a promising separation method for many chemical and environmental applications such as pervaporation and gas separation. Numerous polymeric membranes have been used for these processes due to their good transport properties, ease of fabrication, and relatively low fabrication cost per unit membrane area. However, these types of membranes are suffering from the trade-off between permeability and selectivity.

View Article and Find Full Text PDF

In the packaging industry, the barrier property of packaging materials is of paramount importance. The enhancement of barrier properties of materials can be achieved by adding impermeable nanoparticles into thin polymeric films, known as mixed-matrix membranes (MMMs). Three-dimensional numerical simulations were performed to study the barrier property of these MMMs and to estimate the effective membrane gas permeability.

View Article and Find Full Text PDF

Due to the highly competitive market and increasingly stringent environmental regulations, it is paramount to operate chemical processes at their optimal point. In a typical process, there are usually many process variables (decision variables) that need to be selected in order to achieve a set of optimal objectives for which the process will be considered to operate optimally. Because some of the objectives are often contradictory, Multi-objective optimization (MOO) can be used to find a suitable trade-off among all objectives that will satisfy the decision maker.

View Article and Find Full Text PDF

The pervaporation separation of organic compounds from acetone-butanol-ethanol (ABE) fermentation model solutions was studied using activated carbon (AC) nanoparticle-poly (dimethylsiloxane) (PDMS) mixed matrix membranes (MMM). The effects of the operating conditions and nanoparticle loading content on the membrane performance have been investigated. While the separation factor increased continuously, with an increase in the concentration of nanoparticles, the total flux reached a maximum in the MMM with 8 wt % nanoparticle loading in PDMS.

View Article and Find Full Text PDF

A rotational reciprocating plate impeller prototype, designed to improve the mixing homogeneity of viscous non-Newtonian fermentation broth, has been tested in pullulan fermentations. With this new impeller, the operating levels of several factors were investigated to improve pullulan production with Aureobasidium pullulans ATCC 42023 in a 22-L bioreactor using experimental designs. Because both high molecular weight (MW) and high concentration of pullulan were desired; the exopolysaccharide (EPS) concentration and the broth viscosity were used as optimization objective functions to be maximized.

View Article and Find Full Text PDF

Trichoderma reesei was grown in a stirred-tank bioreactor (STB) and a reciprocating plate bioreactor (RPB) at four different agitation speeds. A semiautomatic image analysis protocol that was developed to characterize the mycelium morphology during the fermentation process based on four morphological types (unbranched, branched, entangled, and clumped microorganisms) was applied to study the effect of agitation on the morphology of T. reesei.

View Article and Find Full Text PDF

Cultivations using Trichoderma reesei Rut C-30 were performed in a 5-l Couette flow bioreactor (CFB) which was designed and built to perform experiments in batch and continuous modes. Process parameters such as dissolved oxygen, pH and temperature were measured and controlled without disturbing the shear profile inside the bioreactor. Effect of shear on the growth, protein production and morphology was studied by performing runs at 100, 200, 300 and 400 rpm.

View Article and Find Full Text PDF

Two home, blood-glucose monitoring meters, OneTouch Ultra and Ascensia Contour, were used to determine the glucose concentration during fermentations of Trichoderma reesei in both flasks and bioreactors. The results, when compared to those given by the 3,5-dinitrosalicylic acid reducing sugar assay, HPLC and YSI 2700 SELECT Biochemistry analyzer, showed that the glucose meters are a quick, reliable and economical alternative method for frequent glucose concentration measurement during fermentation. For T.

View Article and Find Full Text PDF

The production of cellulase from the filamentous fungus Trichoderma reesei is a critical step in the industrial process leading to cellulose ethanol. As a result of the lack of quantitative analysis tools, the intimate relationship that exists between the morphological and physiological states of the microorganism, the shear field in the bioreactor, and the process performance is not yet fully understood. A semiautomatic image analysis protocol was developed to characterize the mycelium morphology and to estimate its percentage viability during the fermentation process based on four morphological types (unbranched, branched, entangled, and clumped microorganisms).

View Article and Find Full Text PDF

Human 293S cells culture for recombinant adenovirus production is traditionally carried out in batch at a maximum of 6 x 10(5) cells/mL. A previous report demonstrated that fed-batch, applied to the adenovirus/293S cells system, improves the volumetric production of viral proteins by increasing the cell density at which cells can be infected, up to 2 x 10(6) cells/mL, without reducing the per-cell yield of product. To increase this cell density limit, the adenovirus production was performed in a perfusion system where the cells were separated by means of a tangential flow filtration device.

View Article and Find Full Text PDF

Fermentation experiments using Aspergillus niger result in a very viscous broth due to the growth of filamentous microorganism. For viscous fermentation processes, it is difficult to estimate with confidence the volumetric oxygen mass transfer coefficient (K(L)a), which can be used for scale-up or design of bioreactors. In the present study, four methods based on dynamic and stationary approaches were used to measure K(L)a throughout the fermentation.

View Article and Find Full Text PDF