Publications by authors named "Jules T"

We investigate the dissipative mechanisms exhibited by creased material sheets when subjected to mechanical loading, which comes in the form of plasticity and relaxation phenomena within the creases. After demonstrating that plasticity mostly affects the rest angle of the creases, we devise a mapping between this quantity and the macroscopic state of the system that allows us to track its reference configuration along an arbitrary loading path, resulting in a powerful monitoring and design tool for crease-based metamaterials. Furthermore, we show that complex relaxation phenomena, in particular memory effects, can give rise to a nonmonotonic response at the crease level, possibly relating to the similar behavior reported for crumpled sheets.

View Article and Find Full Text PDF

A submerged finite cylinder moving under its own weight along a soft incline lifts off and slides at a steady velocity while also spinning. Here, we experimentally quantify the steady spinning of the cylinder and show theoretically that it is due to a combination of an elastohydrodynamic torque generated by flow in the variable gap, and the viscous friction on the edges of the finite-length cylinder. The relative influence of the latter depends on the aspect ratio of the cylinder, the angle of the incline, and the deformability of the substrate, which we express in terms of a single scaled compliance parameter.

View Article and Find Full Text PDF

To go beyond the simple model for the fold as two flexible surfaces or faces linked by a crease that behaves as an elastic hinge, we carefully shape and anneal a crease within a polymer sheet and study its mechanical response. First, we carry out an experimental study that involves recording both the shape of the fold in various loading configurations and the associated force needed to deform it. Then, an elastic model of the fold is built upon a continuous description of both the faces and the crease as a thin sheet with a non-flat reference configuration.

View Article and Find Full Text PDF

Relative motion between soft wet solids arises in a number of applications in natural and artificial settings, and invariably couples elastic deformation fluid flow. We explore this in a minimal setting by considering a fluid-immersed negatively buoyant cylinder moving along a soft inclined wall. Our experiments show that there is an emergent robust steady-state sliding regime of the cylinder with an effective friction that is significantly reduced relative to that of rigid fluid-lubricated contacts.

View Article and Find Full Text PDF