Publications by authors named "Jules M Dake"

Modern engineered materials are composed of space-filling grains or domains separated by a network of interfaces or boundaries. Such polycrystalline microstructures have the capacity to coarsen through boundary migration. Grain growth theories account for the topology of grains and the connectivity of the boundary network in terms of the familiar Euclidian dimension and Euler's polyhedral formula, both of which are based on integer numbers.

View Article and Find Full Text PDF

Sintering is a key technology for processing ceramic and metallic powders into solid objects of complex geometry, particularly in the burgeoning field of energy storage materials. The modeling of sintering processes, however, has not kept pace with applications. Conventional models, which assume ideal arrangements of constituent powders while ignoring their underlying crystallinity, achieve at best a qualitative description of the rearrangement, densification, and coarsening of powder compacts during thermal processing.

View Article and Find Full Text PDF