Publications by authors named "Jules J Magda"

Stimulus-responsive (smart) hydrogels are a promising sensing material for biomedical contexts due to their reversible swelling change in response to target analytes. The design of application-specific sensors that utilize this behavior requires the development of suitable transduction concepts. The presented study investigates a power-transfer-based readout approach that is sensitive to small volumetric changes of the smart hydrogel.

View Article and Find Full Text PDF

Viscoelastic flow has been widely used in microfluidic particle separation processes, in which particles get focused on the channel center in diluted viscoelastic flow. In this paper, the transition from single-stream focusing to multiple-streams focusing (MSF) in high viscoelastic flow is observed, which is applied for cell separation processes. Particle focusing stream bifurcation is caused by the balance between elastic force and viscoelastic secondary flow drag force.

View Article and Find Full Text PDF

As one type of non-Newtonian fluid, viscoelastic fluids exhibit unique properties that contribute to particle lateral migration in confined microfluidic channels, leading to opportunities for particle manipulation and separation. In this paper, particle focusing in viscoelastic flow is studied in a wide range of polyethylene glycol (PEO) concentrations in aqueous solutions. Polystyrene beads with diameters from 3 to 20 μm are tested, and the variation of particle focusing position is explained by the coeffects of inertial flow, viscoelastic flow, and Dean flow.

View Article and Find Full Text PDF

Continuous monitoring of drug concentrations in blood plasma can be beneficial to guide individualized drug administration. High interpatient variability in required dosage and a small therapeutic window of certain drugs, such as anesthetic medications, can cause risks and challenges in accurate dosing during administration. In this work, we present a sensing platform concept using a smart hydrogel micro resonator sheet with medical ultrasound readout that is integrated on the top of a catheter.

View Article and Find Full Text PDF

A novel glucose sensor is presented using smart hydrogels as biocompatible implantable sensing elements, which eliminates the need for implanted electronics and uses an external medical-grade ultrasound transducer for readout. The readout mechanism uses resonance absorption of ultrasound waves in glucose-sensitive hydrogels. glucose concentration changes in the interstitial fluid lead to swelling or deswelling of the gels, which changes the resonance behavior.

View Article and Find Full Text PDF

Hydrogel crosslinking by external stimuli is a versatile strategy to control and modulate hydrogel properties. Besides photonic energy, thermal energy is one of the most accessible external stimuli and widely applicable for many biomedical applications. However, conventional thermal crosslinking systems require a relatively high temperature (over 100 °C) to initiate covalent bond formation.

View Article and Find Full Text PDF

One of the main challenges for implantable biomedical sensing schemes is obtaining a reliable signal while maintaining biocompatibility. In this work, we demonstrate that a combination of medical ultrasound imaging and smart hydrogel micromechanical resonators can be employed for continuous monitoring of analyte concentrations. The sensing principle is based on the shift of the mechanical resonance frequencies of smart hydrogel structures induced by their volume-phase transition in response to changing analyte levels.

View Article and Find Full Text PDF

Particle focusing in viscoelastic fluid flow is a promising approach for inducing particle separations in microfluidic devices. The results from theoretical studies indicated that multiple stream particle focusing can be realized with a large magnitude of the elastic second normal stress difference (N). For dilute polymer solutions, theoretical and experimental studies show that the magnitude of N is never large, no matter how large the polymer molecular weight nor how high the shear rate.

View Article and Find Full Text PDF

Stimuli responsive hydrogels show a strong ability to change in volume with changes in selected environmental properties. This tendency of these hydrogels to change in volume is captured as pressure-change in confined cavities of pressure sensors. An array of pressure sensors on a single chip may carry hydrogels sensitive to multiple, selected metabolic markers and continuously monitor multiple vital parameters simultaneously.

View Article and Find Full Text PDF

Rheological evidence is provided demonstrating that covalent grafting of monodisperse isotactic poly(L-leucine) branches onto linear hyaluronan (HA) polysaccharide chains yields comb-branched HA chains that self-assemble into long-lived physical networks in aqueous solutions driven by hydrophobic interactions between poly(L-leucine) chains. This is in stark contrast to native (unmodified) HA solutions which exhibit no tendency to form long-lived physical networks.

View Article and Find Full Text PDF

Here we generate silk-elastin-like protein (SELP) polymeric nanoparticles and demonstrate precise control over their dimensions using an electrospray differential mobility analyzer (ES-DMA). Electrospray produces droplets encompassing several polymer strands. Evaporation ensues, leading polymer strands to accumulate at the droplet interface, forming a hollow nanoparticle.

View Article and Find Full Text PDF

In this paper, we present preliminary results showing the response of glucose-sensitive hydrogels, confined in micro-pressure sensors, to the changes in environmental glucose concentration. The glucose concentrations were incrementally varied between 20 and 0mM in 0.15M PBS solution at 7.

View Article and Find Full Text PDF

Molecular dynamics simulations of fluoroalkyl-derivatized imidazolium:bis(trifluoromethylsulfonyl)imide (TFSI) room temperature ionic liquids (FADI-RTILs) with cations of the structure 1-F(CF(2))(n)(CH(2))(2)-3-methyl imidazolium have been performed and compared with simulations of alkyl-derivatized 1-H(CH(2))(n+2)-3-methyl imidazolium analogs (ADI-RTILs). Simulations yield RTIL densities, viscosities and ionic conductivities for the FADI-RTILs and ADI-RTILs in reasonably good agreement with experimental data. Partial fluorination results in a larger increase in density than would be anticipated based upon the density difference between perfluoralkane and alkane melts.

View Article and Find Full Text PDF

Perfluoropentane (PFP), a very hydrophobic, nontoxic, noncarcinogenic fluoroalkane, has generated much interest in biomedical applications, including occlusion therapy and controlled drug delivery. For most of these applications, the dispersion within aqueous media of a large quantity of PFP droplets of the proper size is critically important. Surprisingly, the interfacial tension of PFP against water in the presence of surfactants used to stabilize the emulsion has rarely, if ever, been measured.

View Article and Find Full Text PDF

Environmental responsive or smart hydrogels show a volume phase transition due to changes of external stimuli such as pH or ionic strength of an ambient solution. Thus, they are able to convert reversibly chemical energy into mechanical energy and therefore they are suitable as sensitive material for integration in biochemical microsensors and MEMS devices. In this work, micro-fabricated silicon pressure sensor chips with integrated piezoresistors were used as transducers for the conversion of mechanical work into an appropriate electrical output signal due to the deflection of a thin silicon bending plate.

View Article and Find Full Text PDF

Hydrogels that mimic the natural extracellular matrix (ECM) are used in three-dimensional cell culture, cell therapy, and tissue engineering. A semi-synthetic ECM based on cross-linked hyaluronana offers experimental control of both composition and gel stiffness. The mechanical properties of the ECM in part determine the ultimate cell phenotype.

View Article and Find Full Text PDF

The elastic shear modulus G and swelling pressure ω are studied for a basic, pH-responsive hydrogel synthesized by crosslinking copolymerization of co-monomers hydroxypropyl methacrylate and N,N-dimethylaminoethyl methacrylate with crosslinker tetraethylene glycol dimethacrylate. Under normal conditions of use as a "smart" material, hydrogel swelling ratio Q and pH vary simultaneously, but here G and ω values are presented as a function of pH with Q held constant and vice-versa. At fixed pH, G decreases with increase in Q in a power law dependence, as predicted by the Flory-Rehner model.

View Article and Find Full Text PDF

Axisymmetric oscillating pendant drop shape analysis has been used to study the interfacial rheology of the liquid crystal 4'-pentyl-4-biphenylcarbonitrile (5CB) in water with homeotropic anchoring. Nearly spherical 5CB droplets were subjected to low frequency (1-5 mHz) volume oscillations, and the increase in tension with surface dilation was used to calculate the complex modulus. The droplet interface response is completely elastic, with no relaxations occurring on the experimental time scale.

View Article and Find Full Text PDF

We have used molecular dynamics simulations to investigate the ordering of top-shaped molecules in bulk phases and in unsupported thin films. Each rigid anisotropic molecule was composed of 11 Lennard-Jones interaction centers (beads). In an attempt to enhance the nematic stability in preference to smectic, the three central beads were assigned a larger Lennard-Jones diameter than the tail beads, giving the molecule a shape resembling a top.

View Article and Find Full Text PDF

Pendant drop experimental results are presented for the temperature dependence of the interfacial tension between water and the immiscible nematic liquid crystal 4'-pentyl-4-biphenylcarbonitrile (5CB) in the presence of the adsorbed surfactant cetyltrimethylammonium bromide (CTAB). Adsorption of the surfactant lowers the interfacial tension value and is also known from earlier work to induce a transition in liquid crystal surface alignment from planar to homeotropic [Brake et al. Langmuir 2003, 19, 6436.

View Article and Find Full Text PDF

A new type of biosensor is proposed that combines the recognition properties of "intelligent" hydrogels with the sensitivity and reliability of microfabricated pressure transducers. In the proposed device, analyte-induced changes in the osmotic swelling pressure of an environmentally responsive hydrogel are measured by confining it within a small implantable enclosure between a rigid semipermeable membrane and the diaphragm of a miniature pressure transducer. Proof-of-principle tests of this device were performed in vitro using pH-sensitive hydrogels, with osmotic deswelling data for the same hydrogels used as a benchmark for comparison.

View Article and Find Full Text PDF