Despite clinical benefits of tyrosine kinase inhibitors (TKIs) in cancer, most tumors can reactivate proliferation under TKI therapy. Here we present transcriptional profiling of HER2+ breast cancer cells transitioning from dormant drug tolerant cells to re-proliferating cells under continuous HER2 inhibitor (HER2i) therapy. Focusing on phosphatases, expression of dual-specificity phosphatase DUSP6 was found inhibited in dormant cells, but strongly induced upon regrowth.
View Article and Find Full Text PDFTrends Cancer
January 2024
Human cancers share requirements for phosphorylation-dependent signaling, mitotic hyperactivity, and survival after DNA damage. The oncoprotein CIP2A (cancerous inhibitor of PP2A) can coordinate all these cancer cell characteristics. In addition to controlling cancer cell phosphoproteomes via inhibition of protein phosphatase PP2A, CIP2A directly interacts with the DNA damage protein TopBP1 (topoisomerase II-binding protein 1).
View Article and Find Full Text PDFMitochondrial glycolysis and hyperactivity of the phosphatidylinositol 3-kinase-protein kinase B (AKT) pathway are hallmarks of malignant brain tumors. However, kinase inhibitors targeting AKT (AKTi) or the glycolysis master regulator pyruvate dehydrogenase kinase (PDKi) have failed to provide clinical benefits for brain tumor patients. Here, we demonstrate that heterogeneous glioblastoma (GB) and medulloblastoma (MB) cell lines display only cytostatic responses to combined AKT and PDK targeting.
View Article and Find Full Text PDFRAS-mediated human cell transformation requires inhibition of the tumor suppressor protein phosphatase 2A (PP2A). However, the phosphoprotein targets and cellular processes in which RAS and PP2A activities converge in human cancers have not been systematically analyzed. Here, we discover that phosphosites co-regulated by RAS and PP2A are enriched on proteins involved in epigenetic gene regulation.
View Article and Find Full Text PDFThe protein phosphatase 2A (PP2A) heterotrimer PP2A-B56α is a human tumour suppressor. However, the molecular mechanisms inhibiting PP2A-B56α in cancer are poorly understood. Here, we report molecular level details and structural mechanisms of PP2A-B56α inhibition by an oncoprotein CIP2A.
View Article and Find Full Text PDFTargeted therapies have become a mainstay in the treatment of cancer, but their long-term efficacy is compromised by acquired drug resistance. Acquired therapy resistance develops via two phases-first through adaptive development of nongenetic drug tolerance, which is followed by stable resistance through the acquisition of genetic mutations. Drug tolerance has been described in practically all clinical cancer treatment contexts, and detectable drug-tolerant tumors are highly associated with treatment relapse and poor survival.
View Article and Find Full Text PDFWhile organ-confined prostate cancer (PCa) is mostly therapeutically manageable, metastatic progression of PCa remains an unmet clinical challenge. Resistance to anoikis, a form of cell death initiated by cell detachment from the surrounding extracellular matrix, is one of the cellular processes critical for PCa progression towards aggressive disease. Therefore, further understanding of anoikis regulation in PCa might provide therapeutic opportunities.
View Article and Find Full Text PDFMajor depressive disorder (MDD) is a severe mental illness. Decreased brain plasticity and dendritic fields have been consistently found in MDD patients and animal models; however, the underlying molecular mechanisms remain to be clarified. Here, we demonstrate that the deletion of cancerous inhibitor of PP2A (CIP2A), an endogenous inhibitor of protein phosphatase 2A (PP2A), leads to depression-like behaviors in mice.
View Article and Find Full Text PDFSHARPIN is involved in several cellular processes and promotes cancer progression. However, how the choice between different functions of SHARPIN is post-translationally regulated is unclear. Here, we characterized SHARPIN phosphorylation by mass spectrometry and in vitro kinase assay.
View Article and Find Full Text PDFIdentification of ovarian cancer patient subpopulations with increased sensitivity to targeted therapies could offer significant clinical benefit. We report that 22% of the high-grade ovarian cancer tumors at diagnosis express CIP2A oncoprotein at low levels. Furthermore, regardless of their significantly lower likelihood of disease relapse after standard chemotherapy, a portion of relapsed tumors retain their CIP2A-deficient phenotype.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common neurodegenerative disease with limited therapeutic strategies. Cell cycle checkpoint protein kinase 1 (Chk1) is a Ser/Thr protein kinase which is activated in response to DNA damage, the latter which is an early event in AD. However, whether DNA damage-induced Chk1 activation participates in the development of AD and Chk1 inhibition ameliorates AD-like pathogenesis remain unclarified.
View Article and Find Full Text PDFObjectives: Cisplatin is combined with radiotherapy for advanced head and neck squamous cell carcinoma (HNSCC). While providing a beneficial effect on survival, it also causes side effects and thus is an important target when considering treatment de-escalation. Currently, there are no biomarkers to predict its patient-selective therapeutic utility.
View Article and Find Full Text PDFBackground: Currently, no clinically useful biomarkers for radioresistance are available in head and neck squamous cell carcinoma (HNSCC). This study assesses the usefulness of Cell Line Microarray (CMA) method to enhance immunohistochemical screening of potential immunohistochemical biomarkers for radioresistance in HNSCC cell lines.
Methods: Twenty-nine HNSCC cell lines were cultured, cell pellets formalin-fixed, paraffin-embedded, and arrayed.
Cancer stem cells (CSCs) are involved in the initiation and progression of human malignancies by enabling cancer tissue self-renewal capacity and constituting the therapy-resistant population of tumor cells. However, despite the exhausting characterization of CSC genetics, epigenetics, and kinase signaling, eradication of CSCs remains an unattainable goal in most human malignancies. While phosphatases contribute equally with kinases to cellular phosphoregulation, our understanding of phosphatases in CSCs lags severely behind our knowledge about other CSC signaling mechanisms.
View Article and Find Full Text PDFBasal-like breast cancers (BLBC) are characterized by defects in homologous recombination (HR), deficient mitotic checkpoint, and high-proliferation activity. Here, we discover CIP2A as a candidate driver of BLBC. CIP2A was essential for DNA damage-induced initiation of mouse BLBC-like mammary tumors and for survival of HR-defective BLBC cells.
View Article and Find Full Text PDFGlioblastoma (GB) is the most frequent malignant tumor originating from the central nervous system. Despite breakthroughs in treatment modalities for other cancer types, GB remains largely irremediable due to the high degree of intratumoral heterogeneity, infiltrative growth, and intrinsic resistance towards multiple treatments. A sub-population of GB cells, glioblastoma stem cells (GSCs), act as a reservoir of cancer-initiating cells and consequently, constitute a significant challenge for successful therapy.
View Article and Find Full Text PDFGene expression by RNA polymerase II (RNAPII) is tightly controlled by cyclin-dependent kinases (CDKs) at discrete checkpoints during the transcription cycle. The pausing checkpoint following transcription initiation is primarily controlled by CDK9. We discovered that CDK9-mediated, RNAPII-driven transcription is functionally opposed by a protein phosphatase 2A (PP2A) complex that is recruited to transcription sites by the Integrator complex subunit INTS6.
View Article and Find Full Text PDFThe phosphorylation status of oncoproteins is regulated by both kinases and phosphatases. Kinase inhibitors are rarely sufficient for successful cancer treatment, and phosphatases have been considered undruggable targets for cancer drug development. However, innovative pharmacological approaches for targeting phosphatases have recently emerged.
View Article and Find Full Text PDFCancerous inhibitor of protein phosphatase 2A (CIP2A) is involved in immune response, cancer progression, and Alzheimer's disease. However, an understanding of the mechanistic basis of its function in this wide spectrum of physiological and pathological processes is limited due to its poorly characterized interaction networks. Here we present the first systematic characterization of the CIP2A interactome by affinity-purification mass spectrometry combined with validation by selected reaction monitoring targeted mass spectrometry (SRM-MS) analysis in T helper (Th) 17 (Th17) cells.
View Article and Find Full Text PDFPurpose: Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncoprotein that inhibits the tumor suppressor PP2A-B56α. However, mRNA variants remain uncharacterized. Here, we report the discovery of a splicing variant, novel CIP2A variant ().
View Article and Find Full Text PDFGlioblastoma is a fatal disease in which most targeted therapies have clinically failed. However, pharmacological reactivation of tumour suppressors has not been thoroughly studied as yet as a glioblastoma therapeutic strategy. Tumour suppressor protein phosphatase 2A is inhibited by non-genetic mechanisms in glioblastoma, and thus, it would be potentially amendable for therapeutic reactivation.
View Article and Find Full Text PDFCertain Protein Phosphatase 2A (PP2A) complexes are human tumor suppressors. In contrast, a paper in this issue of Cancer Cell and two other recent studies demonstrate that PP2A-STRN3/4 complexes inactivate Hippo tumor suppressor pathway, resulting in YAP activation and tumorigenesis. Furthermore, this new oncogenic phosphatase mechanism may be druggable.
View Article and Find Full Text PDF