Background: Multicellular entities like mammalian tissues or microbial biofilms typically exhibit complex spatial arrangements that are adapted to their specific functions or environments. These structures result from intercellular signaling as well as from the interaction with the environment that allow cells of the same genotype to differentiate into well-organized communities of diversified cells. Despite its importance, our understanding how this cell-cell and metabolic coupling lead to functionally optimized structures is still limited.
View Article and Find Full Text PDFIEEE/ACM Trans Comput Biol Bioinform
July 2020
Ordinary differential equations (ODEs) provide a powerful formalism to model molecular networks mechanistically. However, inferring the model structure, given a set of time course measurements and a large number of alternative molecular mechanisms, is a challenging and open research question. Existing search heuristics are designed only for finding a single best model configuration and cannot account for the uncertainty in selecting the network components.
View Article and Find Full Text PDFMotivation: Cell differentiation is steered by extracellular signals that activate a cell type specific transcriptional program. Molecular mechanisms that drive the differentiation can be analyzed by combining mathematical modeling with population average data. For standard mathematical models, the population average data is informative only if the measurements come from a homogeneous cell culture.
View Article and Find Full Text PDFMotivation: Mechanistic models based on ordinary differential equations provide powerful and accurate means to describe the dynamics of molecular machinery which orchestrates gene regulation. When combined with appropriate statistical techniques, mechanistic models can be calibrated using experimental data and, in many cases, also the model structure can be inferred from time-course measurements. However, existing mechanistic models are limited in the sense that they rely on the assumption of static network structure and cannot be applied when transient phenomena affect, or rewire, the network structure.
View Article and Find Full Text PDFBackground: The differentiation of naive CD 4(+) helper T (Th) cells into effector Th17 cells is steered by extracellular cytokines that activate and control the lineage specific transcriptional program. While the inducing cytokine signals and core transcription factors driving the differentiation towards Th17 lineage are well known, detailed mechanistic interactions between the key components are poorly understood.
Results: We develop an integrative modeling framework which combines RNA sequencing data with mathematical modeling and enables us to construct a mechanistic model for the core Th17 regulatory network in a data-driven manner.
Background: Biochemical systems are inherently noisy due to the discrete reaction events that occur in a random manner. Although noise is often perceived as a disturbing factor, the system might actually benefit from it. In order to understand the role of noise better, its quality must be studied in a quantitative manner.
View Article and Find Full Text PDF