Genome editing in human induced pluripotent stem cells (iPSCs) provides the potential for disease modeling and cell therapy. By generating iPSCs with specific mutations, researchers can differentiate the modified cells to their lineage of interest for further investigation. However, the low efficiency of targeting in iPSCs has hampered the application of genome editing.
View Article and Find Full Text PDFThe ability to differentiate human induced pluripotent stem cells (iPSCs) into hepatocyte-like cells (HLCs) provides new opportunities to study inborn errors in hepatic metabolism. However, to provide a platform that supports the identification of small molecules that can potentially be used to treat liver disease, the procedure requires a culture format that is compatible with screening thousands of compounds. Here, we describe a protocol using completely defined culture conditions, which allow the reproducible differentiation of human iPSCs to hepatocyte-like cells in 96-well tissue culture plates.
View Article and Find Full Text PDFChronic arsenic exposure can result in adverse development effects including decreased intellectual function, reduced birth weight, and altered locomotor activity. Previous in vitro studies have shown that arsenic inhibits stem cell differentiation. MicroRNAs (miRNAs) are small noncoding RNAs that regulate multiple cellular processes including embryonic development and cell differentiation.
View Article and Find Full Text PDFMillions of people are exposed to arsenic through their drinking water and food, but the mechanisms by which it impacts embryonic development are not well understood. Arsenic exposure during embryogenesis is associated with neurodevelopmental effects, reduced weight gain, and altered locomotor activity, and data indicates that arsenic exposure inhibits stem cell differentiation. This study investigated whether arsenic disrupted the Wnt3a signaling pathway, critical in the formation of myotubes and neurons, during the differentiation in P19 mouse embryonic stem cells.
View Article and Find Full Text PDFExposure to arsenic in food and drinking water has been correlated with adverse developmental outcomes, such as reductions in birth weight and neurological deficits. Additionally, studies have shown that arsenic suppresses sensory neuron formation and skeletal muscle myogenesis, although the reason why arsenic targets both of these cell types in unclear. Thus, P19 mouse embryonic stem cells were used to investigate the mechanisms by which arsenic could inhibit cellular differentiation.
View Article and Find Full Text PDFToxicol Appl Pharmacol
December 2014
Arsenic is a toxicant found in ground water around the world, and human exposure mainly comes from drinking water or from crops grown in areas containing arsenic in soils or water. Epidemiological studies have shown that arsenic exposure during development decreased intellectual function, reduced birth weight, and altered locomotor activity, while in vitro studies have shown that arsenite decreased muscle and neuronal cell differentiation. The sonic hedgehog (Shh) signaling pathway plays an important role during the differentiation of both neurons and skeletal muscle.
View Article and Find Full Text PDFCinnamomum osmophloeum Kaneh is an indigenous tree species in Taiwan. In this study, phytochemical characteristics and antioxidant activities of the essential oils and key constituents from the leaves of two C. osmophloeum clones were investigated.
View Article and Find Full Text PDFSelenium is an essential trace nutrient that has a narrow exposure window between its beneficial and detrimental effects. We investigated how selenium affected the development, fertility, and cholinergic signaling of the nematode, Caenorhabditis elegans. Our results showed that selenite supplementation at 0.
View Article and Find Full Text PDFArsenic poisoning affects millions of people worldwide. Although there is accumulating evidence to suggest that the nervous system is a target of arsenic, relatively little information is known regarding its effects on the nervous system. The effects of arsenite on the nervous system in Caenorhabditis elegans were investigated in the present study.
View Article and Find Full Text PDF