Publications by authors named "Jui-Teng Lin"

The kinetics and the conversion features of two 3-component systems (A/B/N), based on the proposed new kinetic schemes of Mokbel and Mau et al, in which a visible LED is used to excite a copper complex to its excited triplet state (G*). The coupling of G* with iodonium salt and ethyl 4-(dimethylamino)benzoate (EDB) produces both free radical polymerization (FRP) of acrylates and the free radical promoted cationic polymerization (CP) of epoxides using various new copper complex as the initiator. Higher FRP and CP conversion can be achieved by co-additive of [B] and N, via the dual function of (i) regeneration [A], and (ii) generation of extra radicals.

View Article and Find Full Text PDF

This article presents, for the first time, the efficacy and curing depth analysis of photo-thermal dual polymerization in metal (Fe) polymer composites for 3D printing of a three-component (A/B/M) system based on the proposed mechanism of our group, in which the co initiators A and B are Irgacure-369 and charge-transfer complexes (CTC), respectively, and the monomer M is filled by Fe. Our formulas show the depth of curing (Zc) is an increasing function of the light intensity, but a decreasing function of the Fe and photoinitiator concentrations. Zc is enhanced by the additive [B], which produces extra thermal radical for polymerization under high temperature.

View Article and Find Full Text PDF

This article presents, for the first time, the kinetics and the general features of a photopolymerization system (under visible light), copper-complex/Iodonium/triethylamine/gold-chloride (orA/B/N/G), with initial concentrations of A, B, N and G, based on the proposed mechanism of Tar et al. Analytic formulas were developed to explore the new features, including: (i) both free radical photopolymerization (FRP) efficacy and the production of nanogold (NG), which are proportional to the relative concentration ratios of (A + B + N)/G and may be optimized for maximum efficacy; (ii) the two competing procedures of NG production and the efficacy of FRP, which can be tailored for an optimal system with nanogold in the polymer matrix; (iii) the FRP efficacy, which is contributed by three components given by the excited state of copper complex (T), and the radicals (R and S) produced by iodonium and amine, respectively; (iv) NG production, which is contributed by the coupling of T and radical (S) with gold ion; and (v) NG production, which has a transient state proportional to the light intensity and the concentration ratio A/G) + (N/(K'M), but also a steady-state independent of the light intensity.

View Article and Find Full Text PDF

The synergic features and enhancing strategies for various photopolymerization systems are reviewed by kinetic schemes and the associated measurements. The important topics include (i) photo crosslinking of corneas for the treatment of corneal diseases using UVA-light (365 nm) light and riboflavin as the photosensitizer; (ii) synergic effects by a dual-function enhancer in a three-initiator system; (iii) synergic effects by a three-initiator C/B/A system, with electron-transfer and oxygen-mediated energy-transfer pathways; (iv) copper-complex (G1) photoredox catalyst in G1/Iod/NVK systems for free radical (FRP) and cationic photopolymerization (CP); (v) radical-mediated thiol-ene (TE) photopolymerizations; (vi) superbase photogenerator based-catalyzed thiol-acrylate Michael (TM) addition reaction; and the combined system of TE and TM using dual wavelength; (vii) dual-wavelength (UV and blue) controlled photopolymerization confinement (PC); (viii) dual-wavelength (UV and red) selectively controlled 3D printing; and (ix) three-wavelength selectively controlled in 3D printing and additive manufacturing (AM). With minimum mathematics, we present (for the first time) the synergic features and enhancing strategies for various systems of multi-components, initiators, monomers, and under one-, two-, and three-wavelength light.

View Article and Find Full Text PDF

Kinetic equations for a modeling system with type-I radical-mediated and type-II oxygen-mediated pathways are derived and numerically solved for the photopolymerization efficacy and curing depth, under the quasi-steady state assumption, and bimolecular termination. We show that photopolymerization efficacy is an increasing function of photosensitizer (PS) concentration ( ) and the light dose at transient state, but it is a decreasing function of the light intensity, scaled by [ / ] at steady state. The curing (or cross-link) depth is an increasing function of and light dose (time × intensity), but it is a decreasing function of the oxygen concentration, viscosity effect, and oxygen external supply rate.

View Article and Find Full Text PDF

The kinetics and modeling of dual-wavelength (UV and blue) controlled photopolymerization confinement (PC) are presented and measured data are analyzed by analytic formulas and numerical data. The UV-light initiated inhibition effect is strongly monomer-dependent due to different C=C bond rate constants and conversion efficacies. Without the UV-light, for a given blue-light intensity, higher initiator concentration (C) and rate constant (k') lead to higher conversion, as also predicted by analytic formulas, in which the total conversion rate () is an increasing function of C and k'R, which is proportional to k'[gBC].

View Article and Find Full Text PDF

Kinetics and analytical formulas for radical-mediated thiol-ene photopolymerization were developed in this paper. The conversion efficacy of thiol-ene systems was studied for various propagation to chain transfer kinetic rate-ratio (R), and thiol-ene concentration molar-ratio (R). Numerical data were analyzed using analytical formulas and compared with the experimental data.

View Article and Find Full Text PDF

The multiple regression formulas and correlation of ocular components with refractive errors are presented by Gaussian optics. The refractive error changing rate for the cornea and lens power, the axial length, anterior chamber depth (ACD) and vitreous chamber depth (VCD) are calculated, including nonlinear terms for more accurate rate functions than the linear theory. Our theory, consistent with the empirical data, shows that the Pearson correlation coefficients for spherical equivalent (SE) and ocular components are highest for SE with axial length, ACD and VCD and weakest for corneal power, lens power and lens thickness.

View Article and Find Full Text PDF

Optimal conditions for maximum efficacy of photoinitiated polymerization are theoretically presented. Analytic formulas are shown for the crosslink time, crosslink depth, and efficacy function. The roles of photoinitiator (PI) concentration, diffusion depth, and light intensity on the polymerization spatial and temporal profiles are presented for both uniform and non-uniform cases.

View Article and Find Full Text PDF

Aim: To analyze the clinical factors influencing the human vision corrections the changing of ocular components of human eye in various applications; and to analyze refractive state a new effective axial length.

Methods: An effective eye model was introduced by the ocular components of human eye including refractive indexes, surface radius (r1, r2, R1, R2) and thickness (t, T) of the cornea and lens, the anterior chamber depth (S1) and the vitreous length (S2). Gaussian optics was used to calculate the change rate of refractive error per unit amount of ocular components of a human eye (the rate function M).

View Article and Find Full Text PDF

Objective: Analysis of the crosslink time, depth and efficacy profiles of UV-light-activated corneal collagen crosslinking (CXL).

Methods: A modeling system described by a coupled dynamic equations are numerically solved and analytic formulas are derived for the crosslinking time (T*) and crosslinking depth (z*). The z-dependence of the CXL efficacy is numerically produced to show the factors characterizing the profiles.

View Article and Find Full Text PDF

Aim: To analyze the efficacy of ultraviolet (UV) light initiating corneal cross-linking (CXL).

Methods: The time-dependent absorption of UV light due to the depletion of the initiator (riboflavin) was calculated. The effective dose of CXL with corneal surface covered by a thin layer of riboflavin was derived analytically.

View Article and Find Full Text PDF

This study proposes a fast 3D dynamic programming expansion to find a shortest surface in a 3D matrix. This algorithm can detect boundaries in an image sequence. Using phantom image studies with added uniform distributed noise from different SNRs, the unsigned error of this proposed method is investigated.

View Article and Find Full Text PDF

Analysis and applications of vision correction via accommodating intraocular lens (AIOL) are presented. By Gaussian optics, analytic formulas for the accommodation rate function (M) for two-optics and three-optics systems are derived and compared with the exact numerical results. In a single-optics AIOL, typical value of M is (0.

View Article and Find Full Text PDF

We describe a color image reconstruction method that enables both direct visualization and direct digital image acquisition from one oral tissue by using various light sources and color compensating filters. In this method, the image of the oral tissue with white light emitting diodes (LEDs) with blue color compensating filter has a larger color difference between the normal and inflamed tissues. The enhanced visualization comes from the white light color mixing between the red normal tissue and bluish white light from the LEDs.

View Article and Find Full Text PDF