Cerebral reperfusion injury in stroke, stemming from interconnected thrombotic and inflammatory signatures, often involves platelet activation, aggregation and its interaction with various immune cells, contributing to microvascular dysfunction. However, the regulatory mechanisms behind this platelet activation and the resulting inflammation are not well understood, complicating the development of effective stroke therapies. Utilizing animal models and platelets from hemorrhagic stroke patients, our research demonstrates that human cerebral dopamine neurotrophic factor (CDNF) acts as an endogenous antagonist, mitigating platelet aggregation and associated neuroinflammation.
View Article and Find Full Text PDFDuring intracerebral hemorrhage (ICH), hematoma formation at the site of blood vessel damage results in local mechanical injury. Subsequently, erythrocytes lyse to release hemoglobin and heme, which act as neurotoxins and induce inflammation and secondary brain injury, resulting in severe neurological deficits. Accelerating hematoma resorption and mitigating hematoma-induced brain edema by modulating immune cells has potential as a novel therapeutic strategy for functional recovery after ICH.
View Article and Find Full Text PDFParkinson's disease (PD) is characterized by the loss of dopaminergic neurons in substantia nigra pars compacta, which leads to the motor control deficits. Recently, cell transplantation is a cutting-edge technique for the therapy of PD. Nevertheless, one key bottleneck to realizing such potential is allogenic immune reaction of tissue grafts by recipients.
View Article and Find Full Text PDFThe specific role of peri-infarct microglia and the timing of its morphological changes following ischemic stroke are not well understood. Valproic acid (VPA) can protect against ischemic damage and promote recovery. In this study, we first determined whether a single dose of VPA after stroke could decrease infarction area or improve functional recovery.
View Article and Find Full Text PDFNeuroinflammation has been shown to exacerbate ischemic brain injury, and is considered as a prime target for the development of stroke therapies. Clinacanthus nutans Lindau (C. nutans) is widely used in traditional medicine for treating insect bites, viral infection and cancer, due largely to its anti-oxidative and anti-inflammatory properties.
View Article and Find Full Text PDFThe omega-3 polyunsaturated fatty acid, docosahexaenoic acid (DHA) is enriched in neural membranes of the CNS, and recent studies have shown a role of DHA metabolism by 15-lipoxygenase-1 (Alox15) in prefrontal cortex resolvin D1 formation, hippocampo-prefrontal cortical long-term-potentiation, spatial working memory, and anti-nociception/anxiety. In this study, we elucidated epigenetic regulation of Alox15 via histone modifications in neuron-like cells. Treatment of undifferentiated SH-SY5Y human neuroblastoma cells with the histone deacetylase (HDAC) inhibitors trichostatin A (TSA) and sodium butyrate significantly increased Alox15 mRNA expression.
View Article and Find Full Text PDFClinacanthus nutans Lindau (C. nutans) is a traditional herbal medicine widely used in Asian countries for treating a number of remedies including snake and insect bites, skin rashes, viral infections, and cancer. However, the underlying molecular mechanisms for its action and whether C.
View Article and Find Full Text PDFClinacanthus nutans Lindau (C. nutans), commonly known as Sabah Snake Grass in southeast Asia, is widely used in folk medicine due to its analgesic, antiviral, and anti-inflammatory properties. Our recent study provided evidence for the regulation of cytosolic phospholipase A2 (cPLA2) mRNA expression by epigenetic factors (Tan et al.
View Article and Find Full Text PDFMany population-based epidemiological studies have unveiled an inverse correlation between intake of herbal plants and incidence of stroke. C. nutans is a traditional herbal medicine widely used for snake bite, viral infection and cancer in Asian countries.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptor-gamma (PPAR-γ), a stress-induced transcription factor, protects neurons against ischemic stroke insult by reducing oxidative stress. NADPH oxidase (NOX) activation, a major driving force in ROS generation in the setting of reoxygenation/reperfusion, constitutes an important pathogenetic mechanism of ischemic brain damage. In the present study, both transient in vitro oxygen-glucose deprivation and in vivo middle cerebral artery (MCA) occlusion-reperfusion experimental paradigms of ischemic neuronal death were used to investigate the interaction between PPAR-γ and NOX.
View Article and Find Full Text PDFActivating transcription factor 3 (ATF3) is a stress-induced transcription factor with diverse functions under disease states in multiple cell types. ATF3 has neuroprotective action against cerebral ischemia, which may involve caspase 3. However, the molecular mechanisms underlying ATF3 regulation of apoptosis are largely unknown.
View Article and Find Full Text PDF15-Deoxy-∆(12,14)-PGJ(2) (15d-PGJ(2)) and thiazolidinedione attenuate reactive oxygen species (ROS) production via a peroxisome proliferator-activated receptor-gamma (PPAR-γ)-dependent pathway. Nonetheless, how PPAR-γ mediates ROS production to ameliorate ischemic brain injury is not clear. Recent studies indicated that nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is the major source of ROS in the vascular system.
View Article and Find Full Text PDFAs the growth of the aging population continues to accelerate globally, increased prevalence of neurodegenerative diseases, including Alzheimer's disease (AD), Parkinson's disease (PD), and stroke, has generated substantial public concern. Unfortunately, despite of discoveries of common factors underlying these diseases, few drugs are available to effectively treat these diseases. Peroxisome proliferator-activated receptor gamma (PPAR-γ) is a ligand-activated transcriptional factor that belongs to the nuclear hormone receptor superfamily.
View Article and Find Full Text PDFStroke, or brain attack, is the third leading cause of death and the leading cause of adult disability worldwide. There is a great demand for intervention therapy. Unfortunately, although more than 700 drugs that target neuroprotection showed beneficial effects in preclinical animal studies, none of them proved efficacious in treating stroke patients.
View Article and Find Full Text PDFStroke is a leading cause of adult disability and mortality. Diabetes is a major risk factor for stroke. Patients with diabetes have a higher incidence of stroke and a poorer prognosis after stroke.
View Article and Find Full Text PDFTo determine the involvement of peroxisome proliferator-activated receptor-gamma (PPAR-gamma) in cytoprotection, we subjected N2-A cells to oxygen-glucose deprivation followed by reoxygenation (H-R). Following H-R insults, H(2)O(2) production was increased while cell viability declined, which was accompanied by loss of mitochondrial membrane potential (MMP), cytochrome c release, caspases 9 and 3 activation, poly(ADP-ribose)polymerase (PARP) cleavage and apoptosis. Rosiglitazone up to 5 microM protected cell viability, normalized MMP, and prevented apoptotic signals.
View Article and Find Full Text PDFBackground: Thiazolidinediones have been reported to protect against ischemia-reperfusion injury. Their protective actions are considered to be peroxisome proliferator-activated receptor-gamma (PPAR-gamma)-dependent; however, it is unclear how PPAR-gamma activation confers resistance to ischemia-reperfusion injury.
Methods And Results: We evaluated the effects of rosiglitazone or PPAR-gamma overexpression on cerebral infarction in a rat model and investigated the antiapoptotic actions in the N2-A neuroblastoma cell model.
Arterioscler Thromb Vasc Biol
March 2006
Objective: Brain expresses abundant lipocalin-type prostaglandin (PG) D2 (PGD2) synthase but the role of PGD2 and its metabolite, 15-deoxy-Delta(12,14) PGJ2 (15d-PGJ2) in brain protection is unclear. The aim of this study is to assess the effect of 15d-PGJ2 on neuroprotection.
Methods And Results: Adenoviral transfer of cyclooxygenase-1 (Adv-COX-1) was used to amplify the production of 15d-PGJ2 in ischemic cortex in a rat focal infarction model.
J Cereb Blood Flow Metab
April 2006
Prostacyclin (PGI2), a potent vasodilator and inhibitor of platelet aggregation and leukocyte activation, is crucial in vascular diseases such as stroke. Prostacyclin synthase (PGIS) is the key enzyme for PGI2 synthesis. Although expression of PGIS was noted in the brain, its role in ischemic insult remains unclear.
View Article and Find Full Text PDFThis study aimed to detect apoptosis and necrosis in MRC-5, a normal human lung cell line, by using noninvasive proton nuclear magnetic resonance (1H NMR). Live MRC-5 cells were processed first for 1H NMR spectroscopy; subsequently their types and the percentage of cell death were assessed on a flow cytometer. Cadmium (Cd) and mercury (Hg) induced apoptosis and necrosis in MRC-5 cells, respectively, as revealed by phosphatidylserine externalization on a flow cytometer.
View Article and Find Full Text PDFCadmium (Cd) is an environmental pollutant of global concern with a 10-30-year biological half-life in humans. Accumulating evidence suggests that the lung is one of the major target organs of inhaled Cd compounds. Our previous report demonstrated that 100 microM Cd induces MRC-5 cells, normal human lung fibroblasts, to undergo caspase-independent apoptosis mediated by mitochondrial membrane depolarization and translocation of apoptosis-inducing factor (AIF) from mitochondria into the nucleus.
View Article and Find Full Text PDFCadmium, a well-known environmental hazard, has caused serious health problems in humans and animals. Accumulating evidence suggests the cadmium toxicity is mediated by oxidative stress-induced cell death. However, the molecular signaling underlying cadmium-induced apoptosis remains unclear.
View Article and Find Full Text PDF