Publications by authors named "Jui-Chao Kuo"

In the present work, we take the influences of activated slip systems and the orientation spread into account to predict the cup height using analytical earing models and compare the predicted results with experimental results. The effect of boundary conditions of the various stress states and the work hardening exponents are compared and discussed for profile of single crystals. A stress ratio of -0.

View Article and Find Full Text PDF

A raw electron backscatter diffraction (EBSD) signal can be empirically decomposed into a Kikuchi diffraction pattern and a smooth background. For pattern indexing, the latter is generally undesirable but can reveal topographical, compositional, or diffraction contrast. In this study, we proposed a new background correction method using polynomial fitting (PF) algorithm to obtain clear Kikuchi diffraction patterns for some applications in nonconductive materials due to coating problems, at low accelerated voltage and at rough sample surfaces and for the requirement of high pattern quality in HR-EBSD.

View Article and Find Full Text PDF

The destabilization problem is of importance in the application of yttria-stabilized zirconia (YSZ) bio-ceramic in the oral environment due to phase transformation between tetragonal to monoclinic. Thus, in this study, the lattice distortion induced by hydrothermal aging in yttria-stabilized zirconia (YSZ) was investigated, in which YSZ specimens were subjected to hydrothermal-aging treatment for 0-48 h. The Kikuchi-band based method was employed to calculate the lattice distortion after phase transformation and the results from EBSD were compared with these obtained by X-ray diffraction (XRD).

View Article and Find Full Text PDF

In this study, the effect of austenite grain size on acicular ferrite (AF) nucleation in low-carbon steel containing 13 ppm Mg is determined. The average austenite grain size was calculated using OM Leica software. Results show that the predicted and experimental values of austenite grain size are extremely close, with a deviation of less than 20 µm.

View Article and Find Full Text PDF

This work aims to investigate the influence of intrinsic and extrinsic factors on the physical resolution of the transmission electron backscattered diffraction technique (t-EBSD) in aluminum and silver. Here, we focus on the intrinsic factors, namely, atomic number and thickness of the specimen, and extrinsic set-up factors, which include the electron beam voltage, working distance, and specimen tilt. The working distance and tilt angle, which are selected as 12 mm and 60° for Al and 12 mm and 50° for Ag, respectively, reveal a sharp pattern with high contrast.

View Article and Find Full Text PDF

In this study, we first reported a lateral flow assay combined with primer extension (PEXT) and gold nanoparticles for single-nucleotide polymorphism (SNP) genotyping of the tmigd1 gene of the Tsaiya ducks (Anas platyrhynchos), which has the advantages of simplicity of operation, cost-effectiveness, and time-saving. Gold nanoparticles were tailed with thiol-thymine oligodeoxyribonucleotides (thiol-(dT)30) using the salt-aging method at 25°C and used as a label in a lateral flow assay. The lateral flow device was composed of test and control zones on a nitrocellulose membrane containing streptavidin and adenosine oligodeoxyribonucleotides ((dA)30), respectively.

View Article and Find Full Text PDF

A quantitative approach was proposed to determine the spatial resolution of transmission electron backscatter diffraction (t-EBSD) and to understand the limits of spatial resolution of t-EBSD. In this approach, Cu bicrystals and digital image correlation were employed. The effects of accelerating voltage and specimen thickness on the spatial resolution of t-EBSD were also investigated.

View Article and Find Full Text PDF

In the present study, electron backscatter diffraction (EBSD) and electron channeling contrast imaging (ECCI) techniques were applied to investigate the deformation pattern of coarse ferrite grains after being subjected to 3%, 6%, and 10% tensile deformation. Oligocrystals of Crofer 22H ferritic steel were obtained as experimental material at 1075°C for 22min annealing. Using kernel average misorientation (KAM) mapping obtained from EBSD, possible slip planes are (110), (101), (12-1) and (32-1) in grain A; (0-11), (-101), (-112), (1-21) in grain B; and (0-11), (1-21) and (11-2) in grain C.

View Article and Find Full Text PDF

Tin oxide (SnO) thin films were prepared under various flow ratios of O₂/(O₂ + Ar) on unheated glass substrate using the ion beam sputtering (IBS) deposition technique. This work studied the effects of the flow ratio of O₂/(O₂ + Ar), chamber pressures and post-annealing treatment on the physical properties of SnO₂ thin films. It was found that annealing affects the crystal quality of the films as seen from both X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis.

View Article and Find Full Text PDF

This study investigated the effect of annealing temperature on the precipitation behavior of Crofer(®) 22 H at 600°C, 700°C, and 800°C. The grain size distribution, precipitate phase identification, and microstructure were analyzed using electron backscatter diffraction (EBSD) and energy dispersive X-ray spectroscopy (EDS). The morphology of Laves phase (Fe,Cr,Si)(2)(Nb,W) precipitates having the Cr(2)Nb structure changed from strip-like to needle-shaped as the annealing temperature was increased.

View Article and Find Full Text PDF

In this study, bicrystals of silver (Ag) and aluminum (Al) were used to investigate the physical spatial resolution of the electron backscatter diffraction system combining a digital image correlation method. Furthermore, the effect of the accelerating voltage and probe current was investigated on the physical spatial resolution of the lateral and longitudinal resolutions for Ag and Al, respectively. The lateral and longitudinal resolutions show high dependency on the accelerating voltage for a low atomic mass material of Al, In addition, these are almost independent of the accelerating voltage for a high atomic mass material of Ag.

View Article and Find Full Text PDF

In this work, textures measured by electron backscatter diffraction (EBSD) and X-ray diffraction in rolled FePd alloys were compared. The effect of scanning size used for EBSD measurements was investigated. The correlation coefficient was first proposed to quantify the similarity of the orientation density profile along the α- and β-fibers after cold rolling.

View Article and Find Full Text PDF

In this study, a quantitative approach is proposed to understand the effect of the accelerating voltage and the probe current on the physical resolution of EBSD. The accelerating voltage was varied from 5 to 30kV and probe currents of 1, 10, and 40nA were selected. The lateral, longitudinal, and depth resolutions at 10kV and 1nA were 34.

View Article and Find Full Text PDF