Publications by authors named "Juhyuk Moon"

In situ CO mixing technology is a potential technology for permanently sequestering CO during concrete manufacturing processes. Although it has been approved as a promising carbon capture and utilisation (CCU) method, its effect on the leachability of heavy metals from cementitious compounds has not yet been studied. This study focuses on the effect of in situ CO mixing of cement paste on the leaching of hexavalent chromium (Cr(VI)).

View Article and Find Full Text PDF

This study aims to investigate the relationship between the steel fibers and the electromagnetic wave shielding effectiveness of a high-performance fiber-reinforced cementitious composite (HPFRCC). The distribution characteristics of the steel fibers and the variation of the electrical conductivity of HPFRCC as a function of the fiber content were quantified based on micro computed tomography (CT) and impedance measurements to determine their correlations with the electromagnetic shielding effectiveness. The impedance results showed that no electrical network was formed in the composite by the steel fibers and it is difficult to manufacture HPFRCC with high-electrical conductivity using steel fibers alone without CNTs or other carbon-based materials.

View Article and Find Full Text PDF

This study explored the hydration reaction of ultra-high-performance concrete (UHPC) by using X-ray diffraction (XRD), nuclear magnetic resonance (NMR), and thermogravimetric analysis (TGA) as analysis methods. The partial- or no-known crystal structure (PONKCS) method was adopted to quantify the two main amorphous phases of silica fume and C-S-H; such quantification is critical for understanding the hydration reaction of UHPC. The measured compressive strength was explained well by the degree of hydration found by the PONKCS method, particularly the amount of amorphous C-S-H.

View Article and Find Full Text PDF

Silica fume (SF) is a key ingredient in the production of ultra-high performance fiber-reinforced concrete (UHPFRC). The use of undensified SF may have an advantage in the dispersion efficiency inside cement-based materials, but it also carries a practical burden such as high material costs and fine dust generation in the workplace. This study reports that a high strength of 200 MPa can be achieved by using densified SF in UHPFRC with Portland limestone cement.

View Article and Find Full Text PDF

This study investigated the heat-induced acceleration of cement hydration and pozzolanic reaction focusing on mechanical performance and structural modification at the meso- and micro-scale. The pozzolanic reaction was implemented by substituting 20 wt.% of cement with silica fume, considered the typical dosage of silica fume in ultra-high performance concrete.

View Article and Find Full Text PDF

Superabsorbent polymer (SAP) is attracting attention as a water-entraining admixture that reduces shrinkage or heals cracks in concrete. Cross-linked sodium polyacrylate SAPs, which are the most widely produced SAPs in the global market, are applicable as concrete admixtures. However, there have been contradictory results on the freeze-thaw resistance of concrete with SAPs.

View Article and Find Full Text PDF

This study investigated the material properties and hydration characteristics of calcium sulfoaluminate cement (CSA) based mortars cured under 3 different initial curing temperatures. Two CSA cements with different M-values were selected. Obtained experimental results of mechanical properties, dimensional stability, and heat release were explained by hydration characteristics from X-ray diffraction, thermal gravimetric analysis, porosimetry, and thermodynamic modeling.

View Article and Find Full Text PDF

For optimum production of ultra-high performance concrete (UHPC), the material and microstructural properties of UHPC cured under various heat treatment (HT) conditions are studied. The effects of HT temperature and duration on the hydration reaction, microstructure, and mechanical properties of UHPC are investigated. Increasing HT temperature accelerates both cement hydration and pozzolanic reaction, but the latter is more significantly affected.

View Article and Find Full Text PDF

The understanding and control of early hydration of tricalcium silicate (C₃S) is of great importance to cement science and concrete technology. However, traditional characterization methods are incapable of providing morphological and spectroscopic information about in situ hydration at the nanoscale. Using soft X-ray spectromicroscopy, we report the changes in morphology and molecular structure of C₃S at an early stage of hydration.

View Article and Find Full Text PDF

Without using strong alkaline solution or ordinary Portland cement, a new structural binder consisting of fly ash and hydrated lime was hardened through an intensified pozzolanic reaction. The main experimental variables are the addition of silica fume and initial thermal treatment (60 °C for 3 days). A series of experiments consisting of mechanical testing (compressive and flexural strength, modulus of elasticity), X-ray diffraction, and measurements of the heat of hydration, pore structure, and shrinkage were conducted.

View Article and Find Full Text PDF

This study assesses the quantitative effects of incorporating high-volume fly ash (HVFA) into tricalcium silicate (C₃S) paste on the hydration, degree of silicate polymerization, and Al substitution for Si in calcium silicate hydrate (C-S-H). Thermogravimetric analysis and isothermal conduction calorimetry showed that, although the induction period of C₃S hydration was significantly extended, the degree of hydration of C₃S after the deceleration period increased due to HVFA incorporation. Synchrotron-sourced soft X-ray spectromicroscopy further showed that most of the C₃S in the C₃S-HVFA paste was fully hydrated after 28 days of hydration, while that in the pure C₃S paste was not.

View Article and Find Full Text PDF

This study investigated the hydration characteristics and strength development of calcium sulfoaluminate-belite (CSAB) cements incorporating calcium carbonate (CC) powders with various particle size distributions and different gypsum amounts. In general, the CSAB hydration was accelerated by the CC powder, but the acceleration and resulting strength improvement were more effective with finer CC powder. Regardless of the fineness of the CC powder, it took part in the hydration of CSAB cement, forming hemicarboaluminate and monocarboaluminate phases.

View Article and Find Full Text PDF

An alkali-activated blend of aluminum cement and class F fly ash is an attractive solution for geothermal wells where cement is exposed to significant thermal shocks and aggressive environments. Set-control additives enable the safe cement placement in a well but may compromise its mechanical properties. This work evaluates the effect of a tartaric-acid set retarder on phase composition, microstructure, and strength development of a sodium-metasilicate-activated calcium aluminate/fly ash class F blend after curing at 85 °C, 200 °C or 300 °C.

View Article and Find Full Text PDF

An ultra-thin and large-area skin-compatible heterogeneous organic/metal-oxide photosensor array is demonstrated which is capable of sensing and boosting signals with high detectivity and signal-to-noise ratio. For the realization of ultra-flexible and high-sensitive heterogeneous photosensor arrays on a polyimide substrate having organic sensor arrays and metal-oxide boosting circuitry, solution-processing and room-temperature alternating photochemical conversion routes are applied.

View Article and Find Full Text PDF

The success of silicon based high density integrated circuits ignited explosive expansion of microelectronics. Although the inorganic semiconductors have shown superior carrier mobilities for conventional high speed switching devices, the emergence of unconventional applications, such as flexible electronics, highly sensitive photosensors, large area sensor array, and tailored optoelectronics, brought intensive research on next generation electronic materials. The rationally designed multifunctional soft electronic materials, organic and carbon-based semiconductors, are demonstrated with low-cost solution process, exceptional mechanical stability, and on-demand optoelectronic properties.

View Article and Find Full Text PDF