Herein, a new methodology for solution-processed ZnO fabrication on Ag nanowire network electrode via combustion reaction is reported, where the amount of heat emitted during combustion was minimized by controlling the reaction temperature to avoid damaging the underlying Ag nanowires. The degree of participation of acetylacetones, which are volatile fuels in the combustion reaction, was found to vary with the reaction temperature, as revealed by thermogravimetric and compositional analyses. An optimized processing temperature of 180 °C was chosen to successfully fabricate a combustion-reacted ZnO and Ag nanowire hybrid electrode with a sheet resistance of 30 Ω/sq and transmittance of 87%.
View Article and Find Full Text PDFIn this report, we describe the fabrication of periodic Ag nanogrid electrodes by capillary assembly of silver nanoparticles (AgNPs) along patterned nanogrid templates. By assembling the AgNPs into these high-aspect-ratio nanogrid patterns, we can obtain high-aspect-ratio nanogratings, which can overcome the inherent trade-off between the optical transmittance and the sheet resistance of transparent electrodes. The junction resistance between the AgNPs is effectively reduced by photochemical welding and post-annealing.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2016
Here, we demonstrate that chemical reduction of oxide layers on metal nanostructures fuses junctions at nanoscale to improve the opto-electrical performance, and to ensure environmental stability of the interconnected nanonetwork. In addition, the reducing reaction lowers the adhesion force between metal nanostructures and substrates, facilitating the detachment of them from substrates. Detached metal nanonetworks can be easily floated on water and transferred onto various substrates including hydrophobic, floppy, and curved surfaces.
View Article and Find Full Text PDF