Publications by authors named "Juhong Rao"

The live attenuated yellow fever vaccine (YF17D) has caused controversial safety issues in history with low-yield problems, which has led to a large population being unable to be vaccinated and vaccine shortage in facing recent outbreaks. Here, we report a safer live attenuated vaccine candidate, YF17D-Δ77, which contains 77 nucleotides deletion in the 3' untranslated region (3' UTR) of the YF17D genome. YF17D-Δ77 exhibited no neurotropism and decreased viscerotropism and caused significantly lower lethality in mice compared to YF17D.

View Article and Find Full Text PDF

The global emergence of SARS-CoV-2 variants has led to increasing breakthrough infections in vaccinated populations, calling for an urgent need to develop more effective and broad-spectrum vaccines to combat COVID-19. Here we report the preclinical development of RQ3013, an mRNA vaccine candidate intended to bring broad protection against SARS-CoV-2 variants of concern (VOCs). RQ3013, which contains pseudouridine-modified mRNAs formulated in lipid nanoparticles, encodes the spike (S) protein harboring a combination of mutations responsible for immune evasion of VOCs.

View Article and Find Full Text PDF

Nipah virus (NiV) is a highly lethal zoonotic paramyxovirus that poses a severe threat to humans due to its high morbidity and the lack of viable countermeasures. Vaccines are the most crucial defense against NiV infections. Here, a recombinant chimpanzee adenovirus-based vaccine (AdC68-G) and a DNA vaccine (DNA-G) were developed by expressing the codon-optimized full-length glycoprotein (G) of NiV.

View Article and Find Full Text PDF

Nipah virus (NiV), a bat-borne paramyxovirus, results in neurological and respiratory diseases with high mortality in humans and animals. Developing vaccines is crucial for fighting these diseases. Previously, only a few studies focused on the fusion (F) protein alone as the immunogen.

View Article and Find Full Text PDF

SARS-CoV-2 infection is a global public health threat. Vaccines are considered amongst the most important tools to control the SARS-CoV-2 pandemic. As expected, deaths from SARS-CoV-2 infection have dropped dramatically with widespread vaccination.

View Article and Find Full Text PDF

In order to overcome the pandemic of COVID-19, messenger RNA (mRNA)-based vaccine has been extensively researched as a rapid and versatile strategy. Herein, we described the immunogenicity of mRNA-based vaccines for Beta and the most recent Omicron variants. The homologous mRNA-Beta and mRNA-Omicron and heterologous Ad5-nCoV plus mRNA vaccine exhibited high-level cross-reactive neutralization for Beta, original, Delta, and Omicron variants.

View Article and Find Full Text PDF

• Delta variant of SARS-CoV-2 can effectively infect the • Delta variant grows faster than the early strain isolated from Wuhan in late 2019. • Shedding pattern, viral load and disease severity of Delta variant are similar to the early strain isolated from Wuhan. • This study supports the attributed rapid disease spread of the Delta variant.

View Article and Find Full Text PDF

The pandemic of COVID-19 caused by SARS-CoV-2 has raised a new challenges to the scientific and industrious fields after over 1-year spread across different countries. The ultimate approach to end the pandemic is the timely application of vaccines to achieve herd immunity. Here, a novel SARS-CoV-2 receptor-binding domain (RBD) homodimer was developed as a SARS-CoV-2 vaccine candidate.

View Article and Find Full Text PDF