The function of astrocytes intertwines with the extracellular matrix, whose neuron and glial cell-derived components shape neuronal plasticity. Astrocyte abnormalities have been reported in the brain of the mouse model for fragile X syndrome (FXS), the most common cause of inherited intellectual disability, and a monogenic cause of autism spectrum disorder. We compared human FXS and control astrocytes generated from human induced pluripotent stem cells and we found increased expression of urokinase plasminogen activator (uPA), which modulates degradation of extracellular matrix.
View Article and Find Full Text PDFAstrocytes form functionally and morphologically distinct populations of cells with brain-region-specific properties. Human pluripotent stem cells (hPSCs) offer possibilities to generate astroglia for studies investigating mechanisms governing the emergence of astrocytic diversity. We established a method to generate human astrocytes from hPSCs with forebrain patterning and final specification with ciliary neurotrophic factor (CNTF).
View Article and Find Full Text PDFA triplet repeat expansion leading to transcriptional silencing of the gene results in fragile X syndrome (FXS), which is a common cause of inherited intellectual disability and autism. Phenotypic variation requires personalized treatment approaches and hampers clinical trials in FXS. We searched for microRNA (miRNA) biomarkers for FXS using deep sequencing of urine and identified 28 differentially regulated miRNAs when 219 reliably identified miRNAs were compared in dizygotic twin boys who shared the same environment, but one had an FXS full mutation, and the other carried a premutation allele.
View Article and Find Full Text PDF