Publications by authors named "Juhl H"

Tumor tissue collections are used to uncover pathways associated with disease outcomes that can also serve as targets for cancer treatment, ideally by comparing the molecular properties of cancer tissues to matching normal tissues. The quality of such collections determines the value of the data and information generated from their analyses including expression and modifications of nucleic acids and proteins. These biomolecules are dysregulated upon ischemia and decompose once the living cells start to decay into inanimate matter.

View Article and Find Full Text PDF

Background & Aims: The identification of colorectal cancer (CRC) molecular subtypes has prognostic and potentially diagnostic value for patients, yet reliable subtyping remains unavailable in the clinic. The current consensus molecular subtype (CMS) classification in CRCs is based on complex RNA expression patterns quantified at the gene level. The clinical application of these methods, however, is challenging due to high uncertainty of single-sample classification and associated costs.

View Article and Find Full Text PDF

Biobanks are vital for high-throughput translational research, but the rapid development of novel molecular techniques, especially in omics assays, poses challenges to traditional practices and recommendations. In our study, we used biospecimens from oncological patients in Polish clinics and collaborated with the Indivumed Group. For serum/plasma samples, we monitored hemolysis, controlled RNA extraction, assessed cDNA library quality and quantity, and verified NGS raw data.

View Article and Find Full Text PDF

Fully automated machine learning (AutoML) for predictive modeling is becoming a reality, giving rise to a whole new field. We present the basic ideas and principles of Just Add Data Bio (JADBio), an AutoML platform applicable to the low-sample, high-dimensional omics data that arise in translational medicine and bioinformatics applications. In addition to predictive and diagnostic models ready for clinical use, JADBio focuses on knowledge discovery by performing feature selection and identifying the corresponding biosignatures, i.

View Article and Find Full Text PDF

Within the last decade, the science of molecular testing has evolved from single gene and single protein analysis to broad molecular profiling as a standard of care, quickly transitioning from research to practice. Terms such as genomics, transcriptomics, proteomics, circulating omics, and artificial intelligence are now commonplace, and this rapid evolution has left us with a significant knowledge gap within the medical community. In this paper, we attempt to bridge that gap and prepare the physician in oncology for multiomics, a group of technologies that have gone from looming on the horizon to become a clinical reality.

View Article and Find Full Text PDF

Cancer genomes have been explored from the early 2000s through massive exome sequencing efforts, leading to the publication of The Cancer Genome Atlas in 2013. Sequencing techniques have been developed alongside this project and have allowed scientists to bypass the limitation of costs for whole-genome sequencing (WGS) of single specimens by developing more accurate and extensive cancer sequencing projects, such as deep sequencing of whole genomes and transcriptomic analysis. The Pan-Cancer Analysis of Whole Genomes recently published WGS data from more than 2600 human cancers together with almost 1200 related transcriptomes.

View Article and Find Full Text PDF

The past decades have seen tremendous developments with respect to "specific" therapeutics that target key signaling molecules to conquer cancer. The key advancements with multiomics technologies, especially genomics, have allowed physicians and molecular oncologists to design "tailor-made" solutions to the specific oncogenes that are deregulated in individual patients, a strategy which has turned out to be successful though the patients quickly develop resistance. The swift integration of multidisciplinary approaches has led to the development of "next generation" therapeutics and, with synergistic therapeutic regimes combined with immune checkpoint inhibitors to reactivate the dampened immune response, has provided the much-needed promise for cancer patients.

View Article and Find Full Text PDF

The development of the sequencing technologies allowed the generation of huge amounts of molecular data from a single cancer specimen, allowing the clinical oncology to enter the era of the precision medicine. This massive amount of data is highlighting new details on cancer pathogenesis but still relies on tissue biopsies, which are unable to capture the dynamic nature of cancer through its evolution. This assumption led to the exploration of non-tissue sources of tumoral material opening the field of liquid biopsies.

View Article and Find Full Text PDF

Colorectal cancer (CRC) patients suffer from the second highest mortality among all cancer entities. In half of all CRC patients, colorectal cancer liver metastases (CRLM) can be observed. Metastatic colorectal cancer is associated with poor overall survival and limited treatment options.

View Article and Find Full Text PDF

The identification of individual or clusters of predictive genetic alterations might help in defining the outcome of cancer treatment, allowing for the stratification of patients into distinct cohorts for selective therapeutic protocols. Neuroblastoma (NB) is the most common extracranial childhood tumour, clinically defined in five distinct stages (1-4 & 4S), where stages 3-4 define chemotherapy-resistant, highly aggressive disease phases. NB is a model for geneticists and molecular biologists to classify genetic abnormalities and identify causative disease genes.

View Article and Find Full Text PDF

To evaluate the expression of immune checkpoint genes, their concordance with expression of IFNγ, and to identify potential novel ICP related genes (ICPRG) in colorectal cancer (CRC), the biological connectivity of six well documented ("classical") ICPs (CTLA4, PD1, PDL1, Tim3, IDO1, and LAG3) with IFNγ and its co-expressed genes was examined by NGS in 79 CRC/healthy colon tissue pairs. Identification of novel IFNγ- induced molecules with potential ICP activity was also sought. In our study, the six classical ICPs were statistically upregulated and correlated with IFNγ, CD8A, CD8B, CD4, and 180 additional immunologically related genes in IFNγ positive (FPKM > 1) tumors.

View Article and Find Full Text PDF

Background: Reference genes are often interchangeably called housekeeping genes due to 1) the essential cellular functions their proteins provide and 2) their constitutive expression across a range of normal and pathophysiological conditions. However, given the proliferative drive of malignant cells, many reference genes such as beta-actin (ACTB) and glyceraldehyde-3-phosphate-dehydrogenase (GAPDH) which play critical roles in cell membrane organization and glycolysis, may be dysregulated in tumors versus their corresponding normal controls METHODS: Because Next Generation Sequencing (NGS) technology has several advantages over hybridization-based technologies, such as independent detection and quantitation of transcription levels, greater sensitivity, and increased dynamic range, we evaluated colorectal cancers (CRC) and their histologically normal tissue counterparts by NGS to evaluate the expression of 21 "classical" reference genes used as normalization standards for PCR based methods. Seventy-nine paired tissue samples of CRC and their patient matched healthy colonic tissues were subjected to NGS analysis of their mRNAs.

View Article and Find Full Text PDF

Purpose Of Review: Precision medicine promises patient tailored, individualized diagnosis and treatment of diseases and relies on clinical specimen integrity and accuracy of companion diagnostic testing. Therefore, pre-analytics, which are defined as the collection, processing, and storage of clinical specimens, are critically important to enable optimal diagnostics, molecular profiling, and clinical decision-making around harvested specimens. This review article discusses the impact of tumor pre-analytics on molecular pathology focusing on biospecimen protein expression and analysis.

View Article and Find Full Text PDF

A proof-of-concept study was conducted to assess whether patients with advanced stage IV cancer for whom predominantly no standard therapy was available could benefit from comprehensive molecular profiling of their tumor tissue to provide targeted therapy. Tumor samples of 83 patients were collected under highly standardized conditions and analyzed using immunohistochemistry, next-generation sequencing and phosphoprotein profiling. Expression and phosphorylation of key oncogenic pathways were measured to identify targets at the (phospho-) proteomic level.

View Article and Find Full Text PDF

Purpose: The methods (IHC/FISH) typically used to assess ER, PR, HER2, and Ki67 in FFPE specimens from breast cancer patients are difficult to set up, perform, and standardize for use in low and middle-income countries. Use of an automated diagnostic platform (GeneXpert®) and assay (Xpert® Breast Cancer STRAT4) that employs RT-qPCR to quantitate ESR1, PGR, ERBB2, and MKi67 mRNAs from formalin-fixed, paraffin-embedded (FFPE) tissues facilitates analyses in less than 3 h. This study compares breast cancer biomarker analyses using an RT-qPCR-based platform with analyses using standard IHC and FISH for assessment of the same biomarkers.

View Article and Find Full Text PDF

Precise characterization of biological processes critical to proliferation and metastasis of colorectal cancer should facilitate the development of diagnostic and prognostic biomarkers as well as novel treatments. Using mRNA-Seq, we examined the protein coding messenger RNA (mRNA) expression profiles across different histologically defined stages of primary colon cancers and compared them to their patient matched normal tissue controls. In comparing 79 colorectal cancers to their matched normal mucosa, tumors were distinguished from normal non-malignant tissues not only in the upregulation of biological processes pertaining to cell proliferation, inflammation, and tissue remodeling, but even more strikingly, in downregulated biological processes including fatty acid beta oxidization for ATP production and epithelial cell differentiation and function.

View Article and Find Full Text PDF

Personalized and precision medicine is gaining recognition due to the limitations by standard diagnosis and treatment; many areas of medicine, from cancer to psychiatry, are moving towards tailored and individualized treatment for patients based on their clinical characteristics and genetic signatures as well as novel imaging techniques. Advances in whole genome sequencing have led to identification of genes involved in a variety of diseases. Moreover, biomarkers indicating severity of disease or susceptibility to treatment are increasingly being characterized.

View Article and Find Full Text PDF

Background: Since 2009, the green Keyhole symbol has been a joint Nordic initiative for signalling healthfulness of specific food products. In 2014, the Danish Ministry of Food, Agriculture and Fisheries carried out a campaign aimed mainly at men over 35 with a low level of education, encouraging them to use the Keyhole in their shopping process. The objective of the study is to evaluate the campaign by measuring its effect on consumer behaviour in the store.

View Article and Find Full Text PDF

The cancer community understands the value of blood profiling measurements in assessing and monitoring cancer. We describe an effort among academic, government, biotechnology, diagnostic, and pharmaceutical companies called the Blood Profiling Atlas in Cancer (BloodPAC) Project. BloodPAC will aggregate, make freely available, and harmonize for further analyses, raw datasets, relevant associated clinical data (e.

View Article and Find Full Text PDF

Background: Clinical diagnostic research relies upon the collection of tissue samples, and for those samples to be representative of the in vivo situation. Tissue collection procedures, including post-operative ischemia, can impact the molecular profile of the tissue at the genetic and proteomic level. Understanding the influence of factors such as ischemia on tissue samples is imperative in order to develop both markers of tissue quality and ultimately accurate diagnostic tests.

View Article and Find Full Text PDF

H NMR spectroscopy was used to investigate the metabolic consequences of general anesthesia in the plasma of two groups of patients with diagnosis for non-metastatic colorectal cancer and metastatic colorectal cancer with liver-metastasis, respectively. Patients were treated with etomidate or propofol, two frequently used sedation agents. Plasma samples were obtained via Ficoll separation.

View Article and Find Full Text PDF

Purpose: To gain insight into factors involved in tumor progression and metastasis, we examined the role of noncoding RNAs in the biologic characteristics of colorectal carcinoma, in paired samples of tumor together with normal mucosa from the same colorectal carcinoma patient. The tumor and healthy tissue samples were collected and stored under stringent conditions, thereby minimizing warm ischemic time.

Experimental Design: We focused particularly on distinctions among high-stage tumors and tumors with known metastases, performing RNA-Seq analysis that quantifies transcript abundance and identifies novel transcripts.

View Article and Find Full Text PDF

Correlative studies have identified numerous biomarkers that are individualizing therapy across many medical specialties, including oncology. Accurate interpretation of these studies requires the collection of tissue samples of sufficient quality. Tissue quality can be measured by changes in levels of gene expression and can be influenced by many factors including pre-analytical conditions, ischemic effects and the surgical collection procedure itself.

View Article and Find Full Text PDF

An understanding of tissue data variability in relation to processing techniques during and postsurgery would be desirable when testing surgical specimens for clinical diagnostics, drug development, or identification of predictive biomarkers. Specimens of normal and colorectal cancer (CRC) tissues removed during colon and liver resection surgery were obtained at the beginning of surgery and postsurgically, tissue was fixed at 10, 20, and 45 minutes. Specimens were analyzed from 50 patients with primary CRC and 43 with intrahepatic metastasis of CRC using a whole genome gene expression array.

View Article and Find Full Text PDF

The development of noninvasive methods to detect and monitor tumors continues to be a major challenge in oncology. We used digital polymerase chain reaction-based technologies to evaluate the ability of circulating tumor DNA (ctDNA) to detect tumors in 640 patients with various cancer types. We found that ctDNA was detectable in >75% of patients with advanced pancreatic, ovarian, colorectal, bladder, gastroesophageal, breast, melanoma, hepatocellular, and head and neck cancers, but in less than 50% of primary brain, renal, prostate, or thyroid cancers.

View Article and Find Full Text PDF