We theoretically investigate the impact of nonlinear dispersion of crystals and multilayers used in Laue-type pulse compressors (LPCs) on chirped x-ray pulse compression, as well as the optimization method for the configuration of LPCs. We also study the application of LPCs to compress chirped x-ray free-electron laser pulses based on the parameters of LCLS-II-HE. The results show that the optimal thickness is half of the Pendellosung period, yielding the best compressor performance with minimal impact from the nonlinear dispersion.
View Article and Find Full Text PDFThis study investigates three mounting methods-clamping, soldering, and a hybrid clamping-soldering approach-for cryogenically cooled thin diamond crystals crucial to stable operation of X-ray Free Electron Laser (XFEL) systems. While clamping methods exhibit temperature resilience and flexibility, meticulous design is required to prevent stress-induced warping and reduce thermal contact area. Soldering methods offer reliable mechanical and thermal bonding but encounter challenges due to the coefficient of thermal expansion mismatch at cryogenic temperatures.
View Article and Find Full Text PDFKnowledge of x-ray free electron lasers' (XFELs) pulse characteristics delivered to a sample is crucial for ensuring high-quality x-rays for scientific experiments. XFELs' self-amplified spontaneous emission process causes spatial and spectral variations in x-ray pulses entering a sample, which leads to measurement uncertainties for experiments relying on multiple XFEL pulses. Accurate in-situ measurements of x-ray wavefront and energy spectrum incident upon a sample poses challenges.
View Article and Find Full Text PDFStanford Synchrotron Radiation Lightsource serves a wide scientific community with its variety of X-ray capabilities. Recently, a wiggler X-ray source located at beamline 10-2 has been employed to perform high-resolution rocking curve imaging (RCI) of diamond and silicon crystals. X-ray RCI is invaluable for the development of upcoming cavity-based X-ray sources at SLAC, including the cavity-based X-ray free-electron laser and X-ray laser oscillator.
View Article and Find Full Text PDFWe present a new mounting design for thin crystal optics with cryogenic cooling compatibility. We design a crystal geometry with two symmetric strain-relief cuts to mitigate the distortion from mounting. We propose to sputter gold onto the crystal and the holder to ensure excellent thermal contact and sufficient mechanical bonding.
View Article and Find Full Text PDFX-ray free-electron lasers (XFELs) open a new era of X-ray based research by generating extremely intense X-ray flashes. To further improve the spectrum brightness, a self-seeding FEL scheme has been developed and demonstrated experimentally. As the next step, new-generation FELs with high repetition rates are being designed, built and commissioned around the world.
View Article and Find Full Text PDFJ Synchrotron Radiat
November 2020
Thermal load has been a haunting factor that undermines the brightness and coherence of the self-seeded X-ray free-electron laser. Different from uniformly pulsed mode, in pulse train mode a thermal quasi-steady state of the crystal monochromator may not be reached. This leads to a dynamic thermal distortion of the spectral transmission curves and seed quality degradation.
View Article and Find Full Text PDFNon-uniform thermal load causes performance degradation of crystal X-ray optics. With the development of high-brightness X-ray free-electron lasers, the thermal load on X-ray optics becomes even more severe. To mitigate the thermal load, a quantitative understanding of thermal effects on the optical performance is necessary.
View Article and Find Full Text PDFCoherence time is one of the fundamental characteristics of light sources. Methods based on autocorrelation have been widely applied from optical domain to soft X-rays to characterize the radiation coherence time. However, for the hard X-ray regime, due to the lack of proper mirrors, it is extremely difficult to implement such autocorrelation scheme.
View Article and Find Full Text PDFOne of the key challenges in scientific researches based on free-electron lasers (FELs) is the characterization of the coherence time of the ultra-fast hard x-ray pulse, which fundamentally influences the interaction process between x-rays and materials. Conventional optical methods, based on autocorrelation, are very difficult to realize due to the lack of mirrors. Here, we experimentally demonstrate a novel method which yields a coherence time of 174.
View Article and Find Full Text PDFPAL-XFEL utilizes a three-chicane bunch compression (3-BC) scheme (the very first of its kind in operation) for free-electron laser (FEL) operation. The addition of a third bunch compressor allows for more effective mitigation of coherent synchrotron radiation during bunch compression and an increased flexibility of system configuration. Start-to-end simulations of the effects of radiofrequency jitter on the electron beam performance show that using the 3-BC scheme leads to better performance compared with the two-chicane bunch compression scheme.
View Article and Find Full Text PDFPrebunching is an effective technique to reduce the radiation saturation length and to improve the longitudinal coherence and output stability in storage-ring-based free-electron lasers (FELs). A novel technique is proposed which uses angular dispersion to enhance the high-harmonic bunching with very small laser-induced energy spread. This technique can effectively reduce the radiation saturation length without significantly reducing the peak power of the FEL.
View Article and Find Full Text PDFSelf-amplified spontaneous emission (SASE) free electron laser (FEL) is capable of generating ultra-short, high power and high brightness X-ray pulses, but its temporal coherence is poor. Self-seeding scheme is an approach to improve the temporal coherence by employing a crystal monochromator. The crystal detuning effect is the phenomenon that the Bragg angle deviates from the middle of the reflection domain due to the refraction effect, and can affect the seed power of hard X-ray self-seeding (HXRSS) FEL.
View Article and Find Full Text PDFHigh-brightness X-ray free-electron lasers (FELs) are perceived as fourth-generation light sources providing unprecedented capabilities for frontier scientific researches in many fields. Thin crystals are important to generate coherent seeds in the self-seeding configuration, provide precise spectral measurements, and split X-ray FEL pulses, etc. In all of these applications a high-intensity X-ray FEL pulse impinges on the thin crystal and deposits a certain amount of heat load, potentially impairing the performance.
View Article and Find Full Text PDFNewtonian fluid dynamics simulations were performed using the Navier-Stokes-Fourier formulations to elucidate the short time-scale (µs and longer) evolution of the density and temperature distributions in an argon-gas-filled attenuator for an X-ray free-electron laser under high-repetition-rate operation. Both hydrodynamic motions of the gas molecules and thermal conductions were included in a finite-volume calculation. It was found that the hydrodynamic wave motions play the primary role in creating a density depression (also known as a filament) by advectively transporting gas particles away from the X-ray laser-gas interaction region, where large pressure and temperature gradients have been built upon the initial energy deposition via X-ray photoelectric absorption and subsequent thermalization.
View Article and Find Full Text PDFA normal-incident flattop laser with a tapered end is proposed as an optical undulator to achieve a high-gain and high-brightness X-ray free electron laser (FEL). The synchronic interaction of an electron bunch with the normal incident laser is realized by tilting the laser pulse front. The intensity of the flattop laser is kept constant during the interaction time of the electron bunch and the laser along the focal plane of a cylindrical lens.
View Article and Find Full Text PDFA novel approach to generating coherent x rays with 10(9)-10(10) photons and femtoseconds duration per laser pulse is proposed. This high intensity x-ray source is realized first by the pulse front tilt of a lateral fed laser to extend the electron-laser synchronic interaction time by several orders, which accomplishes the high-gain free-electron-laser-type exponential growth process and coherent emission with highly microbunched electron beam. Second, two methods are presented to enhance the effective optical undulator strength parameter.
View Article and Find Full Text PDFExponential growth and superradiance regimes in a high-gain free electron laser (FEL) are studied in this paper for both a seeded FEL and a Self-Amplified Spontaneous Emission (SASE) FEL. The results are compared to the earlier superrdaince theory and the recent experimental observation. The influence of an initial energy chirp along the electron bunch on the superradiance mode is explored for the first time.
View Article and Find Full Text PDFAn ABCD formalism is identified to characterize a seeded Free Electron Laser (FEL) with three chirps: an initial frequency chirp in the seed Laser, an energy chirp in the electron bunch, and an intrinsic frequency chirp due to the FEL process. A scheme of generating attosecond few-cycle pulses is proposed by invoking an FEL seeded by high-order harmonic generation (HHG) from an infrared laser. The HHG seed has generic attosecond structure.
View Article and Find Full Text PDF