The understanding of nonlinear propagation effects in low-crosstalk few-mode fiber is crucial for a weakly coupled mode-division multiplexed system. In this Letter, we report the first, to the best of our knowledge, experimental verification of the advantage of intramodal dispersion on mitigating intramodal cross-phase modulation in a weakly coupled few-mode fiber transmission. The experimental system is established over a 70-km multiple-ring-core few-mode fiber accommodating 6 linearly polarized modes, based on which the influences of intramodal cross-phase modulation on transmission performances of each linearly polarized mode are evaluated.
View Article and Find Full Text PDFWe propose an all-fiber mode-selective power splitter (MSPS) for non-circular-symmetric LPlm (l = 1, 2, …) modes, which is suitable for multicasting and optical performance monitoring in mode-division multiplexing optical fiber networks. The MSPSs are asymmetric two-core few-mode directional couplers composed of a few-mode fiber and a two-mode fiber. We theoretically studied the three conditions required by the MSPSs.
View Article and Find Full Text PDFWeakly coupled mode-division multiplexing (MDM) transmission over legacy laid multimode fiber (MMF) has great economic efficiency and can enormously enhance the capacity of short-reach optical interconnections. In order to be compatible with cost-efficient intensity-modulation/direct-detection (IM/DD) transceivers, weakly coupled mode-group demultiplexers that can simultaneously receive each mode group of MMFs are highly desired. In this paper, we propose a scalable low-modal-crosstalk mode-group demultiplexer over MMF based on multiplane light conversion (MPLC).
View Article and Find Full Text PDFSelf-homodyne coherent transmission has recently received extensive investigation as a coherent lite candidate for high-speed short-reach optical networks. In this Letter, we propose a weakly coupled mode-division-multiplexing (MDM) self-homodyne coherent scheme using a multiple-ring-core few-mode fiber, in which one of the modes transmits a self-homodyne local oscillator (LO) and the rest are utilized for carrying signals. Multiple rings of index perturbations in the fiber core are applied to achieve low modal crosstalk, allowing the signals and the remote LO to be transmitted independently.
View Article and Find Full Text PDFWeakly-coupled mode division multiplexing (MDM) technique is a promising candidate for capacity enhancement of short-reach optical interconnections, for which the multiple-ring-core few-mode fiber (MRC-FMF) has been proven to be an effective design method to suppress distributed modal crosstalk. Similar to low chromatic-dispersion (CD) O-band transmission based on single-mode fibers (SMF), all the mode channels in a weakly-coupled FMF for short-reach applications should achieve low CD to support intensity-modulation/direct-detection (IM/DD) transmission. In this paper, we propose, for the first time to the best of our knowledge, an index perturbation method to adjust both effective index and CD of each mode in an MRC-FMF.
View Article and Find Full Text PDFThe integration of quantum key distribution (QKD) and classical optical communication has attracted widespread attention. In this Letter, we experimentally demonstrate a real-time co-propagation of 1 Tbps for 10 classical channels with one discrete-variable QKD channel in the weakly coupled few-mode fiber (FMF). Based on the selection of optimal device parameters and wavelength assignment of classical channels, as well as the optimization of equipment performance, a secure key rate of as high as 2.
View Article and Find Full Text PDFWith the increasing signal rates of a long-haul backbone dense-wavelength-division-multiplexing (DWDM) transmission system, e.g., from 100 Gb/s to 400 Gb/s and even to 800 Gb/s, optical path impairments simultaneously become more severe.
View Article and Find Full Text PDFWeakly-coupled mode division multiplexing (MDM) techniques supporting intensity modulation and direct detection (IM/DD) transmission is a promising candidate to enhance the capacity of short-reach applications such as optical interconnections, in which low-modal-crosstalk mode multiplexers/demultiplexers (MMUX/MDEMUX) are highly desired. In this paper, we firstly propose an all-fiber low-modal-crosstalk orthogonal combine reception scheme for degenerate linearly-polarized (LP) modes, in which signals in both degenerate modes are firstly demultiplexed into the LP mode of single-mode fibers, and then are multiplexed into mutually orthogonal LP and LP modes of a two-mode fiber for simultaneous detection. Then a pair of 4-LP-mode MMUX/MDEMUX consisting of cascaded mode-selective couplers and orthogonal combiners are fabricated with side-polishing processing, which achieve low back-to-back modal crosstalk of lower than -18.
View Article and Find Full Text PDFIn recent years, optical fiber distributed vibration sensors (DVSs) have received extensive investigation and play a significant role in different applications, such as structural health monitoring. In this Letter, we propose for the first time, to the best of our knowledge, a DVS mechanism based on linearly polarized mode coupling in weakly coupled few-mode fibers (FMFs), in which dynamic transverse stress induced by external vibration is measured with quantifiable and spatially resolvable mode coupling along the sensing FMF with ultralow inherent modal crosstalk. A swept-wavelength interferometer method is implemented and the involved data processing method is designed.
View Article and Find Full Text PDFMode-division multiplexing (MDM) technique based on few-mode fibers (FMFs) can achieve multiplicative growth in single-fiber capacity by using different linearly polarized (LP) modes or mode groups as spatial channels. However, its deployment is seriously impeded because multiple-input multiple-output digital signal processing (MIMO-DSP) with huge computational load must be adopted to combat intermodal crosstalk for long-haul FMF transmission. In this paper, we present an intermodal-MIMO-free MDM transmission scheme based on weakly coupled multiple-ring-core FMF, which achieves ultralow distributed modal crosstalk (DMC) so that the signal in each LP mode can be independently received by single-LP-mode MIMO-DSP even after hundreds-of-kilometer transmission.
View Article and Find Full Text PDFFan-in/fan-out (FI/FO) device with low crosstalk is essential for weakly coupled short-reach optical interconnect based on multicore fibers (MCF), for which the laser-direct-writing (LDW) technique is one of the preferred fabrication schemes. In this paper, the influence of FI/FO crosstalk on short-reach intensity-modulation/direction-detection MCF optical interconnection is firstly evaluated, and the crosstalk related to different refractive-index profiles of waveguides and misalignment is analyzed for LDW-FI/FO devices. Then low-crosstalk compact LDW-FI/FO devices matching 8-core MCF are fabricated, adopting multiple-scan method for waveguides with a flat-top refractive-index profile and aberration correction method for precise alignment.
View Article and Find Full Text PDFQuantum key distribution (QKD) is one of the most practical applications in quantum information processing, which can generate information-theoretical secure keys between remote parties. With the help of the wavelength-division multiplexing technique, QKD has been integrated with the classical optical communication networks. The wavelength-division multiplexing can be further improved by the mode-wavelength dual multiplexing technique with few-mode fiber (FMF), which has additional modal isolation and large effective core area of mode, and particularly is practical in fabrication and splicing technology compared with the multi-core fiber.
View Article and Find Full Text PDFColloidal all-inorganic cesium lead halide (CsPbX, X = Cl, Br, I) nanocrystals (NCs) are very important optoelectronic materials and have been successfully utilized as bright light sources and high efficiency photovoltaics due to their facile solution processability. Recently, rare-earth dopants have opened a new pathway for lead halide perovskite NCs for applications in near-infrared wave bands. However, these materials still suffer from serious environmental instability.
View Article and Find Full Text PDFMultiple-input-multiple-output digital signal processing (DSP) has become a severe bottleneck for mode division multiplexing (MDM) because of its huge computational complexity. In this paper, we propose a novel scheme for real-time DSP-free intensity-modulation/direct-detection (IM/DD) MDM transmission, in which the transmission few-mode fiber (FMF) is characterized by multiple-ring-core structure to suppress modal crosstalk among each LP mode, while each pair of non-circularly-symmetric degenerate modes is simultaneously demultiplexed by a degenerate-mode-selective fiber coupler for DSP-free reception. Based on a 10 km ultralow-modal-crosstalk double-ring-core FMF and a pair of all-fiber 4-LP-mode MUX/DEMUX, we demonstrate the first IM/DD MDM prototype system using commercial single-mode (SM) 10 Gbps SFP + modules and 4K video transceivers without any hardware modifications.
View Article and Find Full Text PDFIn this paper, we propose a reconfigurable beam-shaping system to permit energy-efficient non-line-of-sight (NLOS) free-space optical communication. Light is steered around obstacles blocking the direct communication pathway and reaches a receiver after reflecting off of a diffuse surface. A coherent array optical transmitter (CAO-Tx) is used to spatially shape the wavefront of the light incident on a diffuse surface.
View Article and Find Full Text PDFSpatial division multiplexing transmission over few-mode multicore fiber (FM-MCF) recently attracts great interests by simultaneously exploiting two more dimensions than conventional single mode fibers. In this paper, we propose an all-fiber spatial multiplexer (MUX) by cascading mode-selective fiber couplers (MSCs) with a fiber-bundle-type fan-in device, and spatial demultiplexer (DEMUX) by cascading a fiber-bundle-type fan-out device with degenerate-mode-selective fiber couplers and MSCs. Thanks to the low crosstalk of the FM-MCF, spatial MUX/DEMUX and their coupling, weakly-coupled 7-core-2-LP-mode real-time transmission over 1-km of FM-MCF is successfully demonstrated using 10-Gbps commercial enhanced small form-factor pluggable (SFP + ) transceivers.
View Article and Find Full Text PDFThree types of hollow-core fibers, i.e., photonic-bandgap fiber, negative-curvature fiber, and conjoined-tube fiber, are compared in terms of data transmission performance.
View Article and Find Full Text PDFWeakly coupled-mode division multiplexing (MDM) over few-mode fibers (FMF) for short-reach transmission has attracted great interest, which can avoid multiple-input-multiple-output digital signal processing (MIMO-DSP) by greatly suppressing modal crosstalk. In this paper, step-index FMF supporting 4 linearity polarization (LP) modes for MIMO-free transmission is designed and fabricated for the first time, to our knowledge. Modal crosstalk of the fiber is suppressed by increasing the mode effective refractive index differences.
View Article and Find Full Text PDFRecently mode-division-multiplexing (MDM) has been widely investigated to enhance fiber optics capacity, in which modes or mode groups in few-mode fiber (FMF) or multi-mode fiber (MMF) are exploited as different spatial channels for data transmission. For short-reach applications, significantly reducing inter-spatial-channel crosstalk to avoid coherent detection and multiple-input-multiple-output (MIMO) equalization is preferred. Currently most studies focus on the design of weakly-coupled FMFs and mode (de)multiplexers.
View Article and Find Full Text PDFOptical multicasting that supports point-to-multipoint traffic replication can be one of the necessary techniques in next-generation all-optical elastic networks. In this paper, we propose an optical multicasting approach for polarization-division-multiplexing (PDM) orthogonal frequency division multiplexing (OFDM) signals based on a novel polarization-interleaved multi-pump (PIMP) four-wave mixing (FWM) scheme in highly nonlinear fiber (HNLF). Besides format transparency and the support of PDM signals, the scheme further enables wide spectral tunability of generated replicas.
View Article and Find Full Text PDFIn this paper, we propose a cost-effective wavelength-reused mode-division-multiplexing (MDM) system for high speed symmetrical bidirectional mobile fronthaul application. At the base band unit (BBU) pool, one of the spatial modes is used to transmit signal carrier while the others are used for downstream (DS) signal channels. At the remote radio unit (RRU) side, the signal carrier is split and reused as modulation carrier for all the upstream (US) signal channels after mode demultiplexing.
View Article and Find Full Text PDFMode-division multiplexing (MDM) transmission over few-mode optical fiber has emerged as a promising technology to enhance transmission capacity, in which multiple-input-multiple-output (MIMO) digital signal processing (DSP) after coherent detection is used to demultiplex the signals. Compared with conventional single-mode systems, MIMO-MDM systems suffer non-recoverable signal degradation induced by mode-dependent loss (MDL). In this paper, the MDL-induced signal degradation in orthogonal-frequency-division-multiplexing (OFDM) MDM systems is theoretically quantified in terms of mode-average error vector magnitude (EVM) through frequency domain norm analysis.
View Article and Find Full Text PDFElastic optical network (EON) has been proposed recently as a spectrum-efficient optical layer to adapt to rapidly-increasing traffic demands instead of current deployed wavelength-division-multiplexing (WDM) optical network. In contrast with conventional WDM optical cross-connect (OXCs) based on wavelength selective switches (WSSs), the EON OXCs are based on spectrum selective switches (SSSs) which are much more expensive than WSSs, especially for large-scale switching architectures. So the transition cost from WDM OXCs to EON OXCs is a major obstacle to realizing EON.
View Article and Find Full Text PDF