In this study, we show that infrared laser ablation atmospheric pressure photoionization mass spectrometry (LAAPPI-MS) imaging with 70 μm lateral resolution allows for the analysis of () leaf substructures ranging from single-cell trichomes and the interveinal leaf lamina to primary, secondary, and tertiary veins. The method also showed its potential for depth profiling analysis for the first time by mapping analytes at the different depths of the leaf and spatially resolving the topmost trichomes and cuticular wax layer from the underlying tissues. Negative ion LAAPPI-MS detected many different flavonol glycosides, fatty acids, fatty acid esters, galactolipids, and glycosphingolipids, whose distributions varied significantly between the different substructures of leaves.
View Article and Find Full Text PDFSoft X-ray atmospheric pressure photoionization (soft X-ray APPI) as an ionization method in liquid chromatography-mass spectrometry (LC-MS) is presented. The ionization mechanism was examined with selected test compounds in the negative ion mode, using soft X-ray APPI source emitting 4.9 keV photons.
View Article and Find Full Text PDFIn this study, we applied a new IR laser-beam-focusing technique to enable sub-100 μm spatial resolution in laser ablation atmospheric pressure photoionization (LAAPPI) and laser ablation electrospray ionization (LAESI) mass spectrometry imaging (MSI). After optimization of operational parameters, both LAAPPI- and LAESI-MSI with a spatial resolution of 70 μm produced high-quality MS images, which allowed accurate localization of metabolites and lipids in the mouse and rat brain. Negative and positive ion LAAPPI- and LAESI-MS detected many of the same metabolites and lipids in the brain.
View Article and Find Full Text PDFDesorption atmospheric pressure photoionization (DAPPI) is an ambient mass spectrometry (MS) technique that allows the analysis of both polar and nonpolar compounds directly from the surfaces of various sample types. Here, DAPPI was used to study the chemical profiles in different parts of birch and alder tree barks. Four distinct fractions of Betula pendula (silver birch) bark were collected from three different developmental stages of the stem, after which the chemical profiles of the different tissue types were measured.
View Article and Find Full Text PDFIn mass spectrometry imaging of tissues, the size of structures that can be distinguished is determined by the spatial resolution of the imaging technique. Here, the spatial resolution of IR laser ablation is markedly improved by increasing the distance between the laser and the focusing lens. As the distance between the laser and the lens is increased from 1 to 18 m, the ablation spot size decreases from 440 to 44 μm.
View Article and Find Full Text PDF