The forest sector can play a significant role in climate change mitigation. We evaluated forest sector carbon trends and potential mitigation scenarios in Vermont using a systems-based modeling framework that accounts for net emissions from all forest sector components. These components comprise (1) the forest ecosystem, including land-use change, (2) harvested wood products (HWP), and (3) substitution effects associated with using renewable wood-based products and fuels in place of more emission-intensive materials and fossil fuel-based energy.
View Article and Find Full Text PDFTree mortality is a key driver of forest dynamics and its occurrence is projected to increase in the future due to climate change. Despite recent advances in our understanding of the physiological mechanisms leading to death, we still lack robust indicators of mortality risk that could be applied at the individual tree scale. Here, we build on a previous contribution exploring the differences in growth level between trees that died and survived a given mortality event to assess whether changes in temporal autocorrelation, variance, and synchrony in time-series of annual radial growth data can be used as early warning signals of mortality risk.
View Article and Find Full Text PDFConsiderable evidence exists that current global temperatures are higher than at any time during the past millennium. However, the long-term impacts of rising temperatures and associated shifts in the hydrological cycle on the productivity of ecosystems remain poorly understood for mid to high northern latitudes. Here, we quantify species-specific spatiotemporal variability in terrestrial aboveground biomass stem growth across Canada's boreal forests from 1950 to the present.
View Article and Find Full Text PDFTree mortality is a key factor influencing forest functions and dynamics, but our understanding of the mechanisms leading to mortality and the associated changes in tree growth rates are still limited. We compiled a new pan-continental tree-ring width database from sites where both dead and living trees were sampled (2970 dead and 4224 living trees from 190 sites, including 36 species), and compared early and recent growth rates between trees that died and those that survived a given mortality event. We observed a decrease in radial growth before death in ca.
View Article and Find Full Text PDFA large body of literature suggests that asymmetric competition, where large individuals suppress the growth of smaller individuals by intercepting a disproportionate share of incoming light, is a dominant process in tree population development. This has not been examined extensively for long-lived tree species that accumulate growth over many years under varying growing conditions. Using dendrochronological techniques, we reconstructed annual growth and mortality rates at ten stands of jack pine (Pinus banksiana Lamb.
View Article and Find Full Text PDFBackground And Aims: Changes in size inequality in tree populations are often attributed to changes in the mode of competition over time. The mode of competition may also fluctuate annually in response to variation in growing conditions. Factors causing growth rate to vary can also influence competition processes, and thus influence how size hierarchies develop.
View Article and Find Full Text PDF