Nature uses various chiral and unsymmetric building blocks to form substantial and complex supramolecular assemblies. In contrast, the majority of organic ligands used in metallosupramolecular chemistry are symmetric and achiral. Here we extend the group of unsymmetric chiral bile acids used as a scaffold for organic bispyridyl ligands by employing chenodeoxycholic acid (CDCA), an epimer of the previously used ursodeoxycholic acid (UDCA).
View Article and Find Full Text PDFThe denaturation of globular proteins by high pressure is frequently associated with the release of internal voids and/or the exposure of the hydrophobic protein interior to a polar aqueous solvent. Similar evidence with respect to membrane proteins is not available. Here, we investigate the impact of hydrostatic pressures reaching 12 kbar on light-harvesting 2 integral membrane complexes of purple photosynthetic bacteria using two types of innate chromophores in separate strategic locations: bacteriochlorophyll-a in the hydrophobic interior and tryptophan at both protein-solvent interfacial gateways to internal voids.
View Article and Find Full Text PDFA weak absorption tail related to the singlet electronic transition of solvated chlorophyll is discovered using sensitive anti-Stokes fluorescence excitation spectroscopy. The quasi-exponentially decreasing tail was, at ambient temperature, readily observable as far as -2400 cm from the absorption peak and at relative intensity of 10. The tail also weakened rapidly upon cooling the sample, implying its basic thermally activated nature.
View Article and Find Full Text PDFOptical absorption and fluorescence spectra of molecules in condensed phases often show extensive sidebands. Originating from electron-vibrational and electron-phonon couplings, these spectral tails bear important information on the dynamics of electronic states and processes the molecules are involved in. The vibronic sidebands observed in conjugate Q absorption and fluorescence spectra of chlorophyll and bacteriochlorophyll are relatively weak, characterized by the total Huang-Rhys factor which is less than one.
View Article and Find Full Text PDFAs a basis of photosynthesis, photoinduced oxidation of (bacterio)chlorophyll molecules in the special reaction center complexes has been a subject of extensive research. In contrast, the generally harmful photooxidation of antenna chromoproteins has received much less attention. Here, we have established the permanent structural changes in the LH2 antenna bacteriochlorophyll-protein complex from a sulfur photosynthetic purple bacterium Ectothiorhodospira haloalkaliphila taking place at physiological conditions upon intense optical irradiation.
View Article and Find Full Text PDFPhotosynthetic antenna systems enable organisms harvesting light and transfer the energy to the photosynthetic reaction centre, where the conversion to chemical energy takes place. One of the most complex antenna systems, the chlorosome, found in the photosynthetic green sulfur bacterium Chlorobaculum (Cba.) tepidum contains a baseplate, which is a scaffolding super-structure, formed by the protein CsmA and bacteriochlorophyll a.
View Article and Find Full Text PDFWhile the majority of the photochemical states and pathways related to the biological capture of solar energy are now well understood and provide paradigms for artificial device design, additional low-energy states have been discovered in many systems with obscure origins and significance. However, as low-energy states are naively expected to be critical to function, these observations pose important challenges. A review of known properties of low energy states covering eight photochemical systems, and options for their interpretation, are presented.
View Article and Find Full Text PDFLarge, non-symmetrical, inherently chiral bispyridyl ligand L derived from natural ursodeoxycholic bile acid was used for square-planar coordination of tetravalent Pd(II) , yielding the cationic single enantiomer of superchiral coordination complex 1 Pd3 L6 containing 60 well-defined chiral centers in its flower-like structure. Complex 1 can readily be transformed by addition of chloride into a smaller enantiomerically pure cyclic trimer 2 Pd3 L3 Cl6 containing 30 chiral centers. This transformation is reversible and can be restored by the addition of silver cations.
View Article and Find Full Text PDFWe have observed that an assembly of the bacteriochloropyll a molecules into B850 and B875 groups of cyclic bacterial light-harvesting complexes LH2 and LH1, respectively, results an almost total loss of the intra-molecular vibronic structure in the fluorescence spectrum, and simultaneously, an essential enhancement of its phonon sideband due to electron-phonon coupling. While the suppression of the vibronic coupling in delocalized (excitonic) molecular systems is predictable, as also confirmed by our model calculations, a boost of the electron-phonon coupling is rather unexpected. The latter phenomenon is explained by exciton self-trapping, promoted by mixing the molecular exciton states with charge transfer states between the adjacent chromophores in the tightly packed B850 and B875 arrangements.
View Article and Find Full Text PDFA description of intra-chlorosome and from chlorosome to baseplate excitation energy transfer in green sulfur bacteria and in filamentous anoxygenic phototrophs is presented. Various shapes and sizes, single and multiwalled tubes, cylindrical spirals and lamellae of the antenna elements mimicking pigment organization in chlorosomes were generated by using molecular mechanics calculations, and the absorption, LD, and CD spectra of these were predicted by using exciton theory. Calculated absorption and LD spectra were similar for all modeled antenna structures; on the contrary, CD spectra turned out to be sensitive to the size and pigment orientations in the antenna.
View Article and Find Full Text PDFExcitation energy transfer in chlorosomes from photosynthetic green sulfur bacteria, Chlorobaculum (Cba.) tepidum and Prosthecochloris (Pst.) aestuarii, have been studied at room temperature by time-resolved femtosecond transient absorption spectroscopy.
View Article and Find Full Text PDFExciton model for description of experimentally determined excitation energy transfer from carotenoids to chlorophylls in the LHC-II trimer of spinach is presented. Such an approach allows connecting the excitonic states to the spatial structure of the complex and hence descriptions of advancements of the initially created excitations in space and time. Carotenoids were excited at 490 nm and at 500 nm and induced absorbance changes probed in the Chl Q(y) region to provide kinetic data that were interpreted by using the results from exciton calculations.
View Article and Find Full Text PDFThis Article addresses the formation of chiral supramolecular structures in the organogels derived from chiral organogelator 1R (or 2R), and its mixtures with its enantiomer (1S) and achiral analogue 3 by extensive circular dichroism (CD) spectroscopic measurements. Morphological analysis by atomic force microscopy (AFM) and scanning electron microscopy (SEM) were complemented by the measurements of their bulk properties by thermal stability and rheological studies. Specific molecular recognition events (1/3 vs 2/3) and solvent effects (isooctane vs dodecane) were found to be critical in the formation of chiral aggregates.
View Article and Find Full Text PDFIn contrast to photosynthetic reaction centers, which share the same structural architecture, more variety is found in the light-harvesting antenna systems of phototrophic organisms. The largest antenna system described, so far, is the chlorosome found in anoxygenic green bacteria, as well as in a recently discovered aerobic phototroph. Chlorosomes are the only antenna system, in which the major light-harvesting pigments are organized in self-assembled supramolecular aggregates rather than on protein scaffolds.
View Article and Find Full Text PDFThe absorption and fluorescence emission spectra of chlorophyll a in different organic solvents where the central Mg atom is either penta- or hexacoordinated have been studied using conventional and selective spectroscopy methods at ambient and cryogenic temperatures. A breakdown of the basic model mirror-symmetry rule in relation to the lowest-energy Q(y) transitions was observed due to Franck-Condon and Hertzberg-Teller interactions. Detailed vibrational structure in the ground electronic state, virtually independent of the Mg coordination state, was revealed by hole-burning fluorescence line-narrowing technique.
View Article and Find Full Text PDFMolecular mechanics calculations and exciton theory have been used to study pigment organization in chlorosomes of green bacteria. Single and double rod, multiple concentric rod, lamella, and Archimedean spiral macrostructures of bacteriochlorophyll c molecules were created and their spectral properties evaluated. The effects of length, width, diameter, and curvature of the macrostructures as well as orientations of monomeric transition dipole moment vectors on the spectral properties of the aggregates were studied.
View Article and Find Full Text PDFMechanisms of the light-induced ligand exchange reaction of (trans-I) Ru(dcbpy)(CO)2I2 (dcbpy = 4,4'-dicarboxylic acid-2,2'-bipyridine) in ethanol have been studied by transient absorption spectroscopy. Ultraviolet 20 fs excitation pulses centered at 325 nm were used to populate a vibrationally hot excited pi bipyridyl state of the reactant that quickly relaxes to a dissociative Ru-I state resulting in the release of one of the carbonyl groups. Quantum yield measurements have indicated that about 40% of the initially exited reactant molecules form the final photoproduct.
View Article and Find Full Text PDFPhys Chem Chem Phys
February 2006
The present review describes the use of quantum chemical methods in estimation of structures and electronic transition energies of photosynthetic pigments in vacuum, in solution and imbedded in proteins. Monomeric Mg-porphyrins, chlorophylls and bacteriochlorophylls and their solvent 1:1 and 1:2 complexes were studied. Calculations were performed for Mg-porphyrin, Mg-chlorin, Mg-bacteriochlorin, mesochlorophyll a, chlorophylls a, b, c(1), c(2), c(3), d and bacteriochlorophylls a, b, c, d, e, f, g, h, plus several homologues.
View Article and Find Full Text PDFEnergy transfer of the light harvesting complex LHC-II trimer, extracted from spinach, was studied in the Q(y) region at room temperature by femtosecond transient absorption spectroscopy. Configuration interaction exciton method [Linnanto et al. (1999) J Phys Chem B 103: 8739-8750] and 2.
View Article and Find Full Text PDFThe semiempirical PM5 method has been used to calculate fully optimized structures of magnesium-bacteriochlorin, magnesium-chlorin, magnesium-porphin, mesochlorophyll a, chlorophylls a, b, c(1), c(2), c(3), and d, and bacteriochlorophylls a, b, c, d, e, f, g, and h with all homologous structures. Hartree-Fock/6-31G* ab initio and density functional B3LYP/6-31G* methods were used to optimize structures of methyl chlorophyllide a, chlorophyll c(1), and methyl bacteriochlorophyllides a and c for comparison. Spectroscopic transition energies of the chromophores and their 1:1 or 1:2 solvent complexes were calculated with the Zindo/S CIS method.
View Article and Find Full Text PDF