Publications by authors named "Juha Kontturi"

Plant polyketides are well-known for their crucial functions in plants and their importance in the context of human health. They are synthesized by type III polyketide synthases (PKSs) and their final functional diversity is determined by post-PKS tailoring enzymes. Gerbera hybrida is rich in two defense-related polyketides: gerberin and parasorboside.

View Article and Find Full Text PDF

The chalcone synthase superfamily consists of type III polyketidesynthases (PKSs), enzymes responsible for producing plant secondary metabolites with various biological and pharmacological activities. Anther-specific chalcone synthase-like enzymes (ASCLs) represent an ancient group of type III PKSs involved in the biosynthesis of sporopollenin, the main component of the exine layer of moss spores and mature pollen grains of seed plants. In the latter, ASCL proteins are localized in the tapetal cells of the anther where they participate in sporopollenin biosynthesis and exine formation within the locule.

View Article and Find Full Text PDF

Gerbera (Gerbera hybrida) is an economically important ornamental species and a model plant of the Asteraceae family for flower development and secondary metabolism. Gerberin and parasorboside, two bitter tasting glucosidic lactones, are produced in high amounts in nearly all gerbera tissues. Gerbera and its close relatives also produce a rare coumarin, 4-hydroxy-5-methylcoumarin (HMC).

View Article and Find Full Text PDF

• Chalcone synthase (CHS) is the key enzyme in the first committed step of the flavonoid biosynthetic pathway and catalyzes the stepwise condensation of 4-coumaroyl-CoA and malonyl-CoA to naringenin chalcone. In plants, CHS is often encoded by a small family of genes that are temporally and spatially regulated. Our earlier studies have shown that GCHS4 is highly activated by ectopic expression of an MYB-type regulator GMYB10 in gerbera (Gerbera hybrida).

View Article and Find Full Text PDF