We present the first measurements of the Berry phase in a superconducting Cooper pair pump. A fixed amount of Berry phase is accumulated to the quantum-mechanical ground state in each adiabatic pumping cycle, which is determined by measuring the charge passing through the device. The dynamic and geometric phases are identified and measured quantitatively from their different response when pumping in opposite directions.
View Article and Find Full Text PDFWe consider a generic elementary gate sequence which is needed to implement a general quantum gate acting on n qubits-a unitary transformation with 4(n) degrees of freedom. For synthesizing the gate sequence, a method based on the so-called cosine-sine matrix decomposition is presented. The result is optimal in the number of elementary one-qubit gates, 4(n), and scales more favorably than the previously reported decompositions requiring 4(n)-2(n+1) controlled NOT gates.
View Article and Find Full Text PDFOptimal implementation of quantum gates is crucial for designing a quantum computer. We consider the matrix representation of an arbitrary multiqubit gate. By ordering the basis vectors using the Gray code, we construct the quantum circuit which is optimal in the sense of fully controlled single-qubit gates and yet is equivalent with the multiqubit gate.
View Article and Find Full Text PDFWe introduce a method for finding the required control parameters for a quantum computer that yields the desired quantum algorithm without invoking elementary gates. We concentrate on the Josephson charge-qubit model, but the scenario is readily extended to other physical realizations. Our strategy is to numerically find any desired double- or triple-qubit gate.
View Article and Find Full Text PDF