Publications by authors named "Juha Isosomppi"

Background: Usher syndrome Type 3 (USH3) is an autosomal recessive disorder characterized by variable type and degree of progressive sensorineural hearing loss and retinitis pigmentosa. Cochlear implants are widely used among these patients.

Objectives: To evaluate the results and benefits of cochlear implantation in patients with USH3.

View Article and Find Full Text PDF

Clarin 1 (CLRN1) is a four-transmembrane protein expressed in cochlear hair cells and neural retina, and when mutated it causes Usher syndrome type 3 (USH3). The main human splice variant of CLRN1 is composed of three exons that code for a 232-aa protein. In this study, we aimed to refine the structure of CLRN1 by an examination of transcript splice variants and promoter regions.

View Article and Find Full Text PDF

Purpose: Mutations of clarin 1 (CLRN1) cause Usher syndrome type 3 (USH3). To determine the effects of USH3 mutations on CLRN1 function, we examined the cellular distribution and stability of both normal and mutant CLRN1 in vitro. We also searched for novel disease-causing mutations in a cohort of 59 unrelated Canadian and Finnish USH patients.

View Article and Find Full Text PDF

Mutations in the CLRN1 gene cause Usher syndrome type 3 (USH3), a human disease characterized by progressive blindness and deafness. Clarin 1, the protein product of CLRN1, is a four-transmembrane protein predicted to be associated with ribbon synapses of photoreceptors and cochlear hair cells, and recently demonstrated to be associated with the cytoskeleton. To study Clrn1, we created a Clrn1 knockout (KO) mouse and characterized the histological and functional consequences of Clrn1 deletion in the retina and cochlea.

View Article and Find Full Text PDF

Clarin-1 is the protein product encoded by the gene mutated in Usher syndrome III. Although the molecular function of clarin-1 is unknown, its primary structure predicts four transmembrane domains similar to a large family of membrane proteins that include tetraspanins. Here we investigated the role of clarin-1 by using heterologous expression and in vivo model systems.

View Article and Find Full Text PDF

Purpose: Usher syndrome (USH) is an autosomal recessive disorder resulting in retinal degeneration and sensorineural deafness caused by mutations in at least 10 gene loci. USH is divided into three main clinical types: USH1 (33-44%), USH2 (56-67%), and USH3. Worldwide, USH1 and USH2 account for most of the Usher syndrome cases with rare occurrence of USH3.

View Article and Find Full Text PDF

Neuronal ceroid lipofuscinoses (NCLs) are recessively inherited neurodegenerative lysosomal storage disorders characterized by progressive motor and mental retardation, visual failure, and epileptic seizures. Finnish variant late infantile NCL (vLINCL(Fin)) is caused by mutations in the CLN5 gene. We have isolated the mouse Cln5 gene and analyzed its spatiotemporal expression in the central nervous system (CNS) by in situ hybridization and immunohistochemistry.

View Article and Find Full Text PDF

Neuronal ceroid lipofuscinoses (NCLs) are neurodegenerative storage diseases characterized by mental retardation, visual failure, and brain atrophy as well as accumulation of storage material in multiple cell types. The diseases are caused by mutations in the ubiquitously expressed genes, of which six are known. Herein, we report that three NCL disease forms with similar tissue pathology are connected at the molecular level: CLN5 polypeptides directly interact with the CLN2 and CLN3 proteins based on coimmunoprecipitation and in vitro binding assays.

View Article and Find Full Text PDF

The Finnish variant late infantile neuronal ceroid lipofuscinosis (vLINCL) belongs to the neuronal ceroid lipofuscinosis group of common recessively inherited neurodegenerative disorders. The CLN 5 gene responsible for this brain disorder codes for a novel protein with no homology to previously reported proteins. In this study, we have investigated the biosynthesis and intracellular localization of this protein in transiently transfected BHK-21 cells using a CLN5-specific peptide antibody.

View Article and Find Full Text PDF