Publications by authors named "Juha Hassel"

Superconducting qubits seem promising for useful quantum computers, but the currently wide-spread qubit designs and techniques do not yet provide high enough performance. Here, we introduce a superconducting-qubit type, the unimon, which combines the desired properties of increased anharmonicity, full insensitivity to dc charge noise, reduced sensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator. In agreement with our quantum models, we measure the qubit frequency, ω/(2π), and increased anharmonicity α/(2π) at the optimal operation point, yielding, for example, 99.

View Article and Find Full Text PDF

We present a cryogenic microwave noise source with a characteristic impedance of 50 Ω, which can be installed in a coaxial line of a cryostat. The bath temperature of the noise source is continuously variable between 0.1 K and 5 K without causing significant back-action heating on the sample space.

View Article and Find Full Text PDF

Kinetic inductance bolometer technology is a candidate for passive submillimeter wave and terahertz imaging systems. Its benefits include scalability into large 2D arrays and operation with intermediate cryogenics in the temperature range of 5-10 K. We have previously demonstrated the scalability in terms of device fabrication, optics integration, and cryogenics.

View Article and Find Full Text PDF

We theoretically propose and experimentally implement a method of measuring a qubit by driving it close to the frequency of a dispersively coupled bosonic mode. The separation of the bosonic states corresponding to different qubit states begins essentially immediately at maximum rate, leading to a speedup in the measurement protocol. Also the bosonic mode can be simultaneously driven to optimize measurement speed and fidelity.

View Article and Find Full Text PDF

The existence of vacuum fluctuations is one of the most important predictions of modern quantum field theory. In the vacuum state, fluctuations occurring at different frequencies are uncorrelated. However, if a parameter in the Lagrangian of the field is modulated by an external pump, vacuum fluctuations stimulate spontaneous downconversion processes, creating squeezing between modes symmetric with respect to half of the frequency of the pump.

View Article and Find Full Text PDF

Sensing ultra-low magnetic fields has various applications in the fields of science, medicine and industry. There is a growing need for a sensor that can be operated in ambient environments where magnetic shielding is limited or magnetic field manipulation is involved. To this end, here we demonstrate a new magnetometer with high sensitivity and wide dynamic range.

View Article and Find Full Text PDF

Ultra-low-field MRI uses microtesla fields for signal encoding and sensitive superconducting quantum interference devices for signal detection. Similarly, modern magnetoencephalography (MEG) systems use arrays comprising hundreds of superconducting quantum interference device channels to measure the magnetic field generated by neuronal activity. In this article, hybrid MEG-MRI instrumentation based on a commercial whole-head MEG device is described.

View Article and Find Full Text PDF

The fundamental noise limit of a phase-preserving amplifier at frequency [Formula: see text] is the standard quantum limit [Formula: see text]. In the microwave range, the best candidates have been amplifiers based on superconducting quantum interference devices (reaching the noise temperature [Formula: see text] at 700 MHz), and non-degenerate parametric amplifiers (reaching noise levels close to the quantum limit [Formula: see text] at 8 GHz). We introduce a new type of an amplifier based on the negative resistance of a selectively damped Josephson junction.

View Article and Find Full Text PDF

In ultra-low-field magnetic resonance imaging (ULF MRI), superconductive sensors are used to detect MRI signals typically in fields on the order of 10-100 μT. Despite the highly sensitive detectors, it is necessary to prepolarize the sample in a stronger magnetic field on the order of 10-100 mT, which has to be switched off rapidly in a few milliseconds before signal acquisition. In addition, external magnetic interference is commonly reduced by situating the ULF-MRI system inside a magnetically shielded room (MSR).

View Article and Find Full Text PDF