Publications by authors named "Jugurta Montalvao"

This paper explores a data augmentation approach for images of rigid bodies, particularly focusing on electrical equipment and analogous industrial objects. By leveraging manufacturer-provided datasheets containing precise equipment dimensions, we employed straightforward algorithms to generate synthetic images, permitting the expansion of the training dataset from a potentially unlimited viewpoint. In scenarios lacking genuine target images, we conducted a case study using two well-known detectors, representing two machine-learning paradigms: the Viola-Jones (VJ) and You Only Look Once (YOLO) detectors, trained exclusively on datasets featuring synthetic images as the positive examples of the target equipment, namely lightning rods and potential transformers.

View Article and Find Full Text PDF

The use of Gaussian Mixture Models (GMM), adapted through the Expectation Minimization (EM) algorithm, is not rare in Audio Analysis for Surveillance Applications and Environmental sound recognition. Their use is founded on the good qualities of GMM models when aimed at approximating Probability Density Functions (PDF) of random variables. But in some cases, where models are to be adapted from small sample sets instead of large but generic databases, a problem of balance between model complexity and sample size may play an important role.

View Article and Find Full Text PDF