Biostimulation (providing favorable environmental conditions for microbial growth) and bioaugmentation (introducing exogenous microorganisms) are effective approaches in the bioremediation of petroleum-contaminated soil. However, uncertainty remains in the effectiveness of these two approaches in practical application. In this study, we constructed mesocosms using petroleum hydrocarbon-contaminated soil.
View Article and Find Full Text PDFMicrobial taxonomic diversity declines with increasing stress caused by petroleum pollution. However, few studies have tested whether functional diversities vary similarly to taxonomic diversity along the stress gradient. Here, we investigated soil microbial communities in a petrochemically polluted site in China.
View Article and Find Full Text PDFIntroduction: Petroleum pollution resulting from spills and leakages in oil refinery areas has been a significant environmental concern for decades. Despite this, the effects of petroleum pollutants on soil microbial communities and their potential for pollutant biodegradation still required further investigation.
Methods: In this study, we collected 75 soil samples from 0 to 5 m depths of 15 soil profiles in an abandoned refinery to analyze the effect of petroleum pollution on soil microbial diversity, community structure, and network co-occurrence patterns.
The excess sulfadimethoxine (SDM) in the environment could lead to antibiotic resistance by microorganisms and may do harm to many aquatic organisms. In this work, the removal of SDM by potassium permanganate (KMnO) was comprehensively studied. The influence of various factors, including the pH, oxidant doses, and temperature, on SDM removal were investigated.
View Article and Find Full Text PDF