Publications by authors named "Jugal Mohapatra"

The chromatin remodeler ALC1 is activated by DNA damage-induced poly(ADP-ribose) deposited by PARP1/PARP2 and their co-factor HPF1. ALC1 has emerged as a cancer drug target, but how it is recruited to ADP-ribosylated nucleosomes to affect their positioning near DNA breaks is unknown. Here we find that PARP1/HPF1 preferentially initiates ADP-ribosylation on the histone H2B tail closest to the DNA break.

View Article and Find Full Text PDF

We report here chemoenzymatic and fully synthetic methodologies to modify aspartate and glutamate side chains with ADP-ribose at specific sites on peptides. Structural analysis of aspartate and glutamate ADP-ribosylated peptides reveals near-quantitative migration of the side chain linkage from the anomeric carbon to the 2″- or 3″-ADP-ribose hydroxyl moieties. We find that this linkage migration pattern is unique to aspartate and glutamate ADP-ribosylation and propose that the observed isomer distribution profile is present in biochemical and cellular environments.

View Article and Find Full Text PDF

Recently developed chemical and enzyme-based technologies to install serine ADP-ribosylation onto synthetic peptides have enabled new approaches to study poly(ADP-ribose) polymerase (PARP) biology. Here, we establish a generalizable strategy to prepare ADP-ribosylated peptides that are compatible with N-terminal, C-terminal, and sequential protein ligation reactions. Two unique protein-assembly routes are employed to generate full-length linker histone constructs that are homogeneously ADP-ribosylated at known DNA damage-dependent modification sites.

View Article and Find Full Text PDF

Serine ADP-ribosylation (ADPr) is a DNA damage-induced post-translational modification catalyzed by the PARP1/2:HPF1 complex. As the list of PARP1/2:HPF1 substrates continues to expand, there is a need for technologies to prepare mono- and poly-ADP-ribosylated proteins for biochemical interrogation. Here, we investigate the unique peptide ADPr activities catalyzed by PARP1 in the absence and presence of HPF1.

View Article and Find Full Text PDF

Antheraea mylitta arylphorin protein was extracted from the silk gland of fifth instar larvae and purified by ammonium sulphate precipitation, ion-exchange, and gel filtration chromatography. The N-terminal sequencing of ten amino acids (NH-SVVHPPHHEV-COOH) showed similarity with Antheraea pernyi arylphorin. Based on N-terminal and C-terminal A.

View Article and Find Full Text PDF