Quantitative phase imaging (QPI) through multi-core fibers (MCFs) has been an emerging in vivo label-free endoscopic imaging modality with minimal invasiveness. However, the computational demands of conventional iterative phase retrieval algorithms have limited their real-time imaging potential. We demonstrate a learning-based MCF phase imaging method that significantly reduced the phase reconstruction time to 5.
View Article and Find Full Text PDFOptical tomography has emerged as a non-invasive imaging method, providing three-dimensional insights into subcellular structures and thereby enabling a deeper understanding of cellular functions, interactions, and processes. Conventional optical tomography methods are constrained by a limited illumination scanning range, leading to anisotropic resolution and incomplete imaging of cellular structures. To overcome this problem, we employ a compact multi-core fibre-optic cell rotator system that facilitates precise optical manipulation of cells within a microfluidic chip, achieving full-angle projection tomography with isotropic resolution.
View Article and Find Full Text PDFFollowing Moore's law, the density of integrated circuits is increasing in all dimensions, for instance, in 3D stacked chip networks. Amongst other electro-optic solutions, multimode optical interconnects on a silicon interposer promise to enable high throughput for modern hardware platforms in a restricted space. Such integrated architectures require confidential communication between multiple chips as a key factor for high-performance infrastructures in the 5G era and beyond.
View Article and Find Full Text PDFQuantitative phase imaging (QPI) has emerged as method for investigating biological specimen and technical objects. However, conventional methods often suffer from shortcomings in image quality, such as the twin image artifact. A novel computational framework for QPI is presented with high quality inline holographic imaging from a single intensity image.
View Article and Find Full Text PDFQuantitative phase imaging (QPI) is a label-free technique providing both morphology and quantitative biophysical information in biomedicine. However, applying such a powerful technique to in vivo pathological diagnosis remains challenging. Multi-core fiber bundles (MCFs) enable ultra-thin probes for in vivo imaging, but current MCF imaging techniques are limited to amplitude imaging modalities.
View Article and Find Full Text PDFThe mechanical properties of tissues and cells are increasingly recognized as an important feature for the understanding of pathological processes and as a diagnostic tool in biomedicine. Impulsive stimulated Brillouin scattering (ISBS) is promising to overcome shortcomings of other measurement methods such as invasiveness, low spatial resolution and long acquisition time. In this paper, we present for the first time ISBS measurements of hydrogels, which are model materials for biological samples.
View Article and Find Full Text PDF