Natural neutralization of acidic mining lakes is often limited by organic matter. The knowledge of the sources and degradability of organic matter is crucial for understanding alkalinity generation in these lakes. Sediments collected at different depths (surface sediment layer from 0 to 1 cm and deep sediment layer from 4 to 5cm) from an acidic mining lake were studied in order to characterize sedimentary organic matter based on neutral signature markers.
View Article and Find Full Text PDFTetramethylammonium hydroxide-assisted thermochemolysis performed in an off-line mode proved a useful tool in determining organic compounds in the effluent from laboratory-scale phytoremediation systems. Studies were performed with artificial wastewaters contaminated with xylenols and densely rooted Juncus effuses plants. Analytes in these molecular-level based studies included xylenol substrates, an array of stable intermediates such as low molecular weight carboxylic acids and oxidative coupling products (tetramethyl biphenyldiols, tetramethyl diphenylether monools), diagnostic fatty acid biomarkers, as well as lignin-, carbohydrate-, and protein-based phenols and carboxylic acids.
View Article and Find Full Text PDFNon-degradative sorption of organic pollutants onto plant roots during phytoremediation is an essential retardation mechanism. To determine the extent of the attenuation processes the freely dissolved concentrations of organic solutes must be determined rather than their total concentrations. Thus, the assessment of attenuation caused by sorption onto plant compartments can be biased when using traditional methods.
View Article and Find Full Text PDFFatty acid (FA) patterns of sediments collected from the bottom of an acidic mine pit lake (AML) at different depths (surface sediment: 0 to 1cm; deep sediment: 4 to 5 cm) were studied to characterize microbial communities and the sources of sedimentary organic matter (SOM). Studies were performed on the molecular level utilizing source-specific, diagnostic FA biomarkers. The biomarker-based approach has been used widely in marine sediment studies, but has not been applied for sediments from AMLs so far.
View Article and Find Full Text PDFEnviron Sci Technol
December 2011
This study presents a new experimental technique for measuring rates of desorption of organic compounds from dissolved organic matter (DOM) such as humic substances. The method is based on a fast solid-phase extraction of the freely dissolved fraction of a solute when the solution is flushed through a polymer-coated capillary. The extraction interferes with the solute-DOM sorption equilibrium and drives the desorption process.
View Article and Find Full Text PDFThe elimination of Bisphenol A (BPA) from contaminated waters is an urgent challenge. This contribution focuses on BPA degradation by homogeneous Fenton reagent based on reactive ()OH radicals. Pronounced sub-stoichiometric amounts of H(2)O(2) oxidant were used to simulate economically viable processes and operation under not fully controlled conditions, as for example in in situ groundwater remediation.
View Article and Find Full Text PDFHomogeneous Fenton reaction (H(2)O(2)/Fe(2+) system) using significantly substoichiometric concentrations of H(2)O(2) oxidant to oxidize phenol was characterized focusing on the formation of stable aromatic intermediates. Beyond the most abundant benzenediols, the pattern of aromatic intermediates was chiefly characterized by hydroxylated biphenyls and diphenyl ethers with different degrees of hydroxylation. Hydroxylated dibenzofurans (DBF), p,p'-dioxins, as well as highly condensed aromatic intermediates including polyols of polycyclic aromatic hydrocarbons (PAHs), could also be detected, but in lower concentrations.
View Article and Find Full Text PDFHomogeneous catalytic Fenton oxidation proved to be very efficient in the degradation of high concentrations (3.9 mM) of 2-chlorophenol (2-CP) in aqueous matrices. When using [H(2)O(2)](0)/[2-CP](0) substoichiometric molar ratios of 4 and 16, the detected aromatic intermediates included mainly chlorinated benzenediols, with the virtual absence of condensation products of higher molecular weight.
View Article and Find Full Text PDFFatty acid (FA) profiles of the Bt-maize line MON88017 expressing the Cry3Bb1 protein and its near-isogenic line DKC5143 were examined. Plant compartments under study included leaves taken from different internodes and roots. Sample preparation involved pressurized liquid extraction (PLE) of the biomass, transmethylation of the extracted lipids to give fatty acid methyl esters (FAMEs), and finally GC-MS analysis.
View Article and Find Full Text PDFBt-maize MON88017, its near-isogenic line DKC5143, and the two conventional varieties DK315 and Benicia were subjected to tetramethylammonium hydroxide (TMAH)-induced thermochemolysis to reveal molecular level lignin patterns. MON88017 is genetically modified to express the Cry3Bb1 protein aimed at the Western corn rootworm Diabrotica virgifera virgifera, a serious threat for European maize production. The results indicated that roots of the Bt-maize were characterized by a slightly enhanced total lignin content (by approximately 7%) compared to the near-isogenic line, whereas the molecular-based patterns, expressed by the relative fractions of p-hydroxyphenyl, guaiacyl, and syringyl breakdown products (P-, G-, and S-units, respectively) were virtually identical for both lines.
View Article and Find Full Text PDFIt is now widely accepted that many surface waters receive more terrestrial carbon than assumed in the past, and that aquatic food webs are largely based on the supply of external dissolved organic carbon. However, very little information is available on how efficiently external carbon is utilized by microorganisms and transported to consumers of higher trophic levels. To address this issue, we prepared and tested polymers of 14C-p-coumaric acid (PCA) as a model substrate for terrestrial organic carbon.
View Article and Find Full Text PDFControl of hazardous organic micropollutants is a challenging water quality issue. Dissolved humic organic matter (DOM) isolated from oxyhumolite coal mined in Bohemia was investigated as a complexation agent to remove polycyclic aromatic hydrocarbons (PAHs) and functionalized phenols from water by a two-stage process involving complexation and flocculation. After the formation of humic-contaminant complexes, ferric salts were added resulting in the precipitation and flocculation of the DOM and the associated pollutants.
View Article and Find Full Text PDFHumic acid (HA) isolated from highly polluted sediment from the Ravenna Lagoon (Italy) was subjected to pyrolysis/tetramethylammonium hydroxide (TMAH)-induced thermochemolysis to reveal the impact of industrial activities on humification. Special effort was made to distinguish between analytes originating from the polymeric humic organic matter network along with sequestered compounds (which cannot be released by solvent extraction), and the solvent-extractable lipid fraction sorbed onto the organic matrix. Exhaustive solvent extraction of the isolated HA proved mandatory to avoid biased results when identifying the origin of the pyrolyzates of untreated samples.
View Article and Find Full Text PDFSolvent extracts of HOM isolated from highly polluted sediments from the Ravenna Lagoon were studied. Diagnostic indicators included polycyclic aromatic hydrocarbons (PAHs) and nonylphenols as hazardous organic pollutants to characterize anthropogenic pollution, as well as fatty acids (FA, analysed as methyl esters, FAME) to characterize microbial communities responsible for natural attenuation processes. The distribution of PAHs including cyclopentafused surrogates pointed to a significant pyrogenic origin, characteristic for methane combustion.
View Article and Find Full Text PDFTransformation of crops, including maize (Zea mays L.), with the cry1Ab gene from Bacillus thuringiensis to combat lepidopteran pests results in pleiotropic effects regarding lignin biosynthesis. Lignin patterns in stems and leaves of two genetically modified Bt-maize varieties (Novelis T and Valmont T) were studied along with their non-Bt near-isolines (Nobilis and Prelude, respectively).
View Article and Find Full Text PDFThermochemolysis using tetramethylammonium hydroxide (TMAH) as a method for profiling fatty acids (FAs) as methyl esters (FAMEs) was studied with respect to discrimination of bacterial fatty acid patterns in Gram-negative Pseudomonas putida in comparison with patterns obtained by classical preparation schemes (pressurized solvent extraction, alkaline saponification). A new, non-discriminating pyrolysis approach was used in these experiments. In this method, pyrolysis is carried out inside a deactivated stainless steel capillary constituting a part of the column train.
View Article and Find Full Text PDF