Publications by authors named "Juergen G Haas"

Background: The ability to distinguish which hrHPV infections predispose to significant disease is ever more pressing as a result of the increasing move to hrHPV testing for primary cervical screening. A risk-stratifier or "triage" of infection should ideally be objective and suitable for automation given the scale of screening.

Results: CCL2, CCL3, CCL4, CXCL1, CXCL8 and CXCL12 emerged as the strongest, candidate biomarkers to detect underlying disease [cervical intraepithelial neoplasia grade 2 or worse (CIN2+)].

View Article and Find Full Text PDF

Herpes simplex virus type 1 (HSV-1) is a neurotropic virus linked to a range of acute and chronic neurological disorders affecting distinct regions of the brain. Unusually, HSV-1 entry into cells requires the interaction of viral proteins glycoprotein D (gD) and glycoprotein B (gB) with distinct cellular receptor proteins. Several different gD and gB receptors have been identified, including TNFRSF14/HVEM and PVRL1/nectin 1 as gD receptors and PILRA, MAG, and MYH9 as gB receptors.

View Article and Find Full Text PDF

The Alphaherpesvirinae subfamily includes HSV types 1 and 2 and the sequence-divergent pathogen varicella zoster virus (VZV). T cells, controlled by TCR and HLA molecules that tolerate limited epitope amino acid variation, might cross-react between these microbes. We show that memory PBMC expansion with either HSV or VZV enriches for CD4 T cell lines that recognize the other agent at the whole-virus, protein, and peptide levels, consistent with bidirectional cross-reactivity.

View Article and Find Full Text PDF

Varicella zoster virus (VZV) causes chickenpox in humans and, subsequently, establishes latency in the sensory ganglia from where it reactivates to cause herpes zoster. Infection of rhesus macaques with simian varicella virus (SVV) recapitulates VZV pathogenesis in humans thus representing a suitable animal model for VZV infection. While the type I interferon (IFN) response has been shown to affect VZV replication, the virus employs counter mechanisms to prevent the induction of anti-viral IFN stimulated genes (ISG).

View Article and Find Full Text PDF

Kaposi's sarcoma herpesvirus (KSHV) encodes a cluster of twelve micro (mi)RNAs, which are abundantly expressed during both latent and lytic infection. Previous studies reported that KSHV is able to inhibit apoptosis during latent infection; we thus tested the involvement of viral miRNAs in this process. We found that both HEK293 epithelial cells and DG75 cells stably expressing KSHV miRNAs were protected from apoptosis.

View Article and Find Full Text PDF