Microorganisms which are resistant to antibiotics are a global threat to the health of humans and animals. Wastewater treatment plants are known hotspots for the dissemination of antibiotic resistances. Therefore, novel methods for the inactivation of pathogens, and in particular antibiotic-resistant microorganisms (ARM), are of increasing interest.
View Article and Find Full Text PDFThe production of hydrogen peroxide (H O ) is a key parameter for the performance of pulsed discharges submerged in water utilized as advanced oxidation process. So far, any related assessment of the underlying mechanism was conducted for the application of several hundred discharges, which did not allow for a correlation with physical processes. Moreover, the production was rarely investigated depending on water conductivity as one of the most important parameters for the development of submerged discharges.
View Article and Find Full Text PDFIn modern oncology, therapies are based on combining monotherapies to overcome treatment resistance and increase therapy precision. The application of microsecond-pulsed electric fields (PEF) is approved to enhance local chemotherapeutic drug uptake within combination electrochemotherapy regimens. Reactive oxygen species (ROS) have been implicated in anticancer effects, and cold physical plasma produces vast amounts of ROS, which have recently been shown to benefit head and neck cancer patients.
View Article and Find Full Text PDFThe influence of pertinent parameters of a Cole-Cole model in the impedimetric assessment of cell-monolayers was investigated with respect to the significance of their individual contribution. The analysis enables conclusions on characteristics, such as intercellular junctions. Especially cold atmospheric plasma (CAP) has been proven to influence intercellular junctions which may become a key factor in CAP-related biological effects.
View Article and Find Full Text PDFThe potential of electrical impedance spectroscopy (EIS) was demonstrated for the investigation of microstructural properties of osseous tissue. Therefore, a deep neural network (DNN) was implemented for a sensitive assessment of different structural features that were derived on the basis of dielectric parameters, especially relative permittivities, recorded over a frequency range from 40 Hz to 5 MHz. The advantages of the developed method over conventional approaches, including equivalent circuit models (ECMs), linear regression and effective medium approximation (EMA), is the comprehensive quantification of bone morphologies by several microstructural parameters simultaneously, such as bone volume fraction (BV/TV), bone surface-volume-ratio (BS/BV), structure model index (SMI), trabecular number (Tb.
View Article and Find Full Text PDFGlyphosate (GLP) is one of the most widely applied herbicides, and is found ubiquitously in the environment. The removal of glyphosate from waste water and soil is challenging and can be achieved with chemical or biological methods, which, nevertheless, suffer from different disadvantages. The application of a physical plasma for the removal of GLP in water was examined by the application of surface corona discharges in a wire-to-cylinder setup filled with argon.
View Article and Find Full Text PDFPhycocyanin is a blue colored pigment, synthesized by several species of cyanobacteria and red algae. Besides the application as a food-colorant, the pigmented protein is of high interest as a pharmaceutically and nutritionally valuable compound. Since cyanobacteria-derived phycocyanin is thermolabile, red algae that are adapted to high temperatures are an interesting source for phycocyanin extraction.
View Article and Find Full Text PDFMedicinal mushrooms contain highly valuable substances with proven positive effects on human health. To extract these components, different methods are available. Most of them suffer from individual disadvantages, therefore making them economically unviable.
View Article and Find Full Text PDFCylindrospermopsin (CYN) is an important cyanobacterial toxin posing a major threat to surface waters during cyanobacterial blooms. Hence, methods for cyanotoxin removal are required to confront seasonal or local incidences to sustain the safety of potable water reservoirs. Non-thermal plasmas provide the possibility for an environmentally benign treatment which can be adapted to specific concentrations and environmental conditions without the need of additional chemicals.
View Article and Find Full Text PDFA universal strategy for the sensitive investigation of cell responses to external stimuli, in particular nanosecond pulsed electric fields (nsPEFs), was developed based on electrical impedance spectroscopy (EIS) in combination with a multi-peak analysis for the distribution of relaxation times (DRT). The DRT method provides high resolution for the identification of different polarization processes without a priori assumptions, as they are needed by more conventional approaches, such as an evaluation by equivalent circuit models. Accordingly, the physical properties of cells and their changes due to external stimuli can be uncovered and visualized and dispersion mechanisms introduced by Schwan et al.
View Article and Find Full Text PDFNew approaches in oncotherapy rely on the combination of different treatments to enhance the efficacy of established monotherapies. Pulsed electric fields (PEFs) are an established method (electrochemotherapy) for enhancing cellular drug uptake while cold physical plasma is an emerging and promising anticancer technology. This study aimed to combine both technologies to elucidate their cytotoxic potential as well as the underlying mechanisms of the effects observed.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
November 2018
Exposures to pulsed electric fields (PEFs) are known to affect cell membranes and consequently also cell-cell interactions as well as associated characteristics. Bioimpedance analysis offers direct and non-invasive insights into structural and functional changes of cell membranes and extracellular matrices through a rigorous evaluation of electrical parameters. Accordingly, the multi-frequency impedance of confluent monolayers of rat liver epithelial WB-F344 cells was monitored in situ before and after exposure to nanosecond PEFs (nsPEFs).
View Article and Find Full Text PDFPulsed electric fields (PEFs) and cold atmospheric pressure plasma (CAP) are currently both investigated for medical applications. The exposure of cells to PEFs can induce the formation of pores in cell membranes and consequently facilitate the uptake of molecules. In contrast, CAP mainly acts through reactive species that are generated in the liquid environment.
View Article and Find Full Text PDFSeven recalcitrant pharmaceutical residues (diclofenac, 17α-ethinylestradiol, carbamazepine, ibuprofen, trimethoprim, diazepam, diatrizoate) were decomposed by pulsed corona plasma generated directly in water. The detailed degradation pathway was investigated for diclofenac and 21 intermediates could be identified in the degradation cascade. Hydroxyl radicals have been found primarily responsible for decomposition steps.
View Article and Find Full Text PDFGap junctional intercellular communication (GJIC) is an important mechanism that is involved and affected in many diseases and injuries. So far, the effect of nanosecond pulsed electric fields (nsPEFs) on the communication between cells was not investigated. An in vitro approach is presented with rat liver epithelial WB-F344 cells grown and exposed in a monolayer.
View Article and Find Full Text PDFPulsed corona plasma and pulsed electric fields were assessed for their capacity to kill Legionella pneumophila in water. Electrical parameters such as in particular dissipated energy were equal for both treatments. This was accomplished by changing the polarity of the applied high voltage pulses in a coaxial electrode geometry resulting in the generation of corona plasma or an electric field.
View Article and Find Full Text PDFInanimate surfaces serve as a permanent reservoir for infectious microorganisms, which is a growing problem in areas in everyday life. Coating of surfaces with inorganic antimicrobials, such as copper, can contribute to reduce the adherence and growth of microorganisms. The use of a DC operated air plasma jet for the deposition of copper thin films on acrylonitrile butadiene styrene (ABS) substrates is reported.
View Article and Find Full Text PDFAnthropogenic pollutants and in particular pharmaceutical residues are a potential risk for potable water where they are found in increasing concentrations. Different environmental effects could already be linked to the presence of pharmaceuticals in surface waters even for low concentrations. Many pharmaceuticals withstand conventional water treatment technologies.
View Article and Find Full Text PDFThe dielectric spectra of fresh pig whole blood in the β-dispersion range after exposure to 300-nanosecond pulsed electric fields (nsPEFs) with amplitude higher than the supra-electroporation threshold for erythrocytes were recorded by time domain reflectometry dielectric spectroscopy. The implications of the dielectric parameters on the dynamics of post-pulse pore development were discussed in light of the Cole-Cole relaxation model. The temporal development of the Cole-Cole parameters indicates that nsPEFs induced significant poration and swelling of erythrocytes within the first 5 min.
View Article and Find Full Text PDFBiomicrofluidics
September 2012
A microfluidic device that is able to perform dielectric spectroscopy is developed. The device consists of a measurement chamber that is 250 μm thick and 750 μm in radius. Around 1000 cells fit inside the chamber assuming average quantities for cell radius and volume fraction.
View Article and Find Full Text PDFNitric oxide (NO) conversion has been studied for two different types of atmospheric-pressure pulsed-corona discharges, one generates a surface-plasma and the other provides a volume-plasma. For both types of discharges the energy cost for NO removal increases with decreasing oxygen concentration and initial concentration of NO. However, the energy cost for volume plasmas for 50% NO removal, EC(50), from air was found to be 120 eV/molecule, whereas for the surface plasma, it was only 70 eV/molecule.
View Article and Find Full Text PDFThe initial effect of nanosecond pulsed electric fields (nsPEFs) on cells is a change of charge distributions along membranes. This first response is observed as a sudden shift in the plasma transmembrane potential that is faster than can be attributed to any physiological event. These immediate, yet transient, effects are only measurable if the diagnostic is faster than the exposure, i.
View Article and Find Full Text PDFIn-vivo porcine studies on the effect of nanosecond high voltage pulses on liver tissue have shown that cell death can be induced in well-defined tissue volumes without damaging collagen-predominant structures. Comparison of the experimental results with the results of a three-dimensional finite element model allowed us to determine the threshold electric field for cell death. For 30, 100 nanosecond long pulses this was found to be in the range from 12 to 15 kV/cm.
View Article and Find Full Text PDFMany effective anti-cancer strategies target apoptosis and angiogenesis mechanisms. Applications of non-ionizing, nanosecond pulsed electric fields (nsPEFs) induce apoptosis in vitro and eliminate cancer in vivo; however in vivo mechanisms require closer analysis. These studies investigate nsPEF-induced apoptosis and anti-angiogenesis examined by fluorescent microscopy, immunoblots, and morphology.
View Article and Find Full Text PDFNanosecond pulsed electric fields (nsPEFs) can affect the intracellular structures of cells in vitro. This study shows the direct effects of nsPEFs on tumor growth, tumor volume, and histological characteristics of normal skin and B16-F10 melanoma in SKH-1 mice. A melanoma model was set up by injecting B16-F10 into female SKH-1 mice.
View Article and Find Full Text PDF