Publications by authors named "Juergen Engelberth"

Through complex networks of signaling interactions, phytohormones regulate growth, development, reproduction and responses to biotic and abiotic stress. Comprehensive metabolomic approaches, seeking to quantify changes in vast numbers of plant metabolites, may ultimately clarify these complex signaling interactions and consequently explain pleiotropic effects on plant metabolism. Synergistic and antagonistic phytohormone signaling interactions, referred to as crosstalk, are often considered at the level of transduction without proper consideration of synthesis or accumulation of phytohormones because of the limitation and difficulty in quantifying numerous signals.

View Article and Find Full Text PDF

Green leafy volatiles (GLV), six-carbon aldehydes, alcohols, and esters commonly emitted by plants in response to mechanical damage or herbivory, induced intact undamaged corn seedlings to rapidly produce jasmonic acid (JA) and emit sesquiterpenes. More importantly, corn seedlings previously exposed to GLV from neighboring plants produced significantly more JA and volatile sesquiterpenes when mechanically damaged and induced with caterpillar regurgitant than seedlings not exposed to GLV. The use of pure synthetic chemicals revealed that (Z)-3-hexenal, (Z)-3-hexen-1-ol, and (Z)-3-hexenyl acetate have nearly identical priming activity.

View Article and Find Full Text PDF

Insect herbivore-induced plant volatile emission and the subsequent attraction of natural enemies is facilitated by fatty acid-amino acid conjugate (FAC) elicitors, such as volicitin [N-(17-hydroxylinolenoyl)-L-glutamine], present in caterpillar oral secretions. Insect-induced jasmonic acid (JA) and ethylene (E) are believed to mediate the magnitude of this variable response. In maize (Zea mays) seedlings, we examined the interaction of volicitin, JA, and E on the induction of volatile emission at different levels of nitrogen (N) availability that are known to influence E sensitivity.

View Article and Find Full Text PDF

Phytohormones regulate the protective responses of plants against both biotic and abiotic stresses by means of synergistic or antagonistic actions referred to as signaling crosstalk. A bottleneck in crosstalk research is the quantification of numerous interacting phytohormones and regulators. The chemical analysis of salicylic acid, jasmonic acid, indole-3-acetic acid, and abscisic acid is typically achieved by using separate and complex methodologies.

View Article and Find Full Text PDF

Jasmonic acid and salicylic acid represent important signaling compounds in plant defensive responses against other organisms. Here, we present a new method for the easy, sensitive, and reproducible quantification of both compounds by vapor-phase extraction and gas chromatography-positive ion chemical ionization-mass spectrometry. The method is based on a one-step extraction, phase partitioning, methylation with HCl/methanol, and collection of methylated and, thus, volatilized compounds on Super Q filters, thereby omitting further purification steps.

View Article and Find Full Text PDF