Publications by authors named "Juergen Biener"

Unraveling the microstructure-property relationship is crucial for improving material performance and advancing the design of next-generation structural and functional materials. However, this is inherently challenging because it requires both the comprehensive quantification of microstructural features and the accurate assessment of corresponding properties. To meet these requirements, we developed an efficient and comprehensive integrated modeling framework, using polymeric porous materials as a representative model system.

View Article and Find Full Text PDF

Electrochemical CO reduction is a promising technology for replacing fossil fuel feedstocks in the chemical industry but further improvements in catalyst selectivity need to be made. So far, only copper-based catalysts have shown efficient conversion of CO into the desired multi-carbon (C) products. This work explores Cu-based dilute alloys to systematically tune the energy landscape of CO electrolysis toward C products.

View Article and Find Full Text PDF

The dissociation of H is an essential elementary step in many industrial chemical transformations, typically requiring precious metals. Here, we report a hierarchical nanoporous Cu catalyst doped with small amounts of Ti (npTiCu) that increases the rate of H-D exchange by approximately one order of magnitude compared to the undoped nanoporous Cu (npCu) catalyst. The promotional effect of Ti was measured via steady-state H-D exchange reaction experiments under atmospheric pressure flow conditions in the temperature range of 300-573 K.

View Article and Find Full Text PDF

Nanofabrication techniques that can generate large and complex 3D structures with nanoscale features are becoming increasingly important in the fields of biomedicine, micro-optics, and microfluidics. Direct laser writing two-photon polymerization (DLW-TPP) is one such technique that relies on nonlinear absorption of light to form nanoscale 3D features. Although DLW-TPP provides the required nanoscale resolution, its built height is often limited to less than a millimetre.

View Article and Find Full Text PDF

The development of new catalyst materials for energy-efficient chemical synthesis is critical as over 80% of industrial processes rely on catalysts, with many of the most energy-intensive processes specifically using heterogeneous catalysis. Catalytic performance is a complex interplay of phenomena involving temperature, pressure, gas composition, surface composition, and structure over multiple length and time scales. In response to this complexity, the integrated approach to heterogeneous dilute alloy catalysis reviewed here brings together materials synthesis, mechanistic surface chemistry, reaction kinetics, in situ and operando characterization, and theoretical calculations in a coordinated effort to develop design principles to predict and improve catalytic selectivity.

View Article and Find Full Text PDF

Electrochemical CO reduction (ECR) promises the replacement of fossil fuels as the source of feedstock chemicals and seasonal storage of renewable energy. While much progress has been made in catalyst development and electrochemical reactor design, few studies have addressed the effect of catalyst integration on device performance. Using a microfluidic gas diffusion electrolyzer, we systematically studied the effect of thickness and the morphology of electron beam (EB) and magnetron-sputtered (MS) Cu catalyst coatings on ECR performance.

View Article and Find Full Text PDF

Elucidation of reaction mechanisms and the geometric and electronic structure of the active sites themselves is a challenging, yet essential task in the design of new heterogeneous catalysts. Such investigations are best implemented via a multipronged approach that comprises ambient pressure catalysis, surface science, and theory. Herein, we employ this strategy to understand the workings of NiAu single-atom alloy (SAA) catalysts for the selective nonoxidative dehydrogenation of ethanol to acetaldehyde and hydrogen.

View Article and Find Full Text PDF

Porous materials with engineered stretching-dominated lattice designs, which offer attractive mechanical properties with ultra-light weight and large surface area for wide-ranging applications, have recently achieved near-ideal linear scaling between stiffness and density. Here, rather than optimizing the microlattice topology, we explore a different approach to strengthen low-density structural materials by designing tube-in-tube beam structures. We develop a process to transform fully dense, three-dimensional printed polymeric beams into graphitic carbon hollow tube-in-tube sandwich morphologies, where, similar to grass stems, the inner and outer tubes are connected through a network of struts.

View Article and Find Full Text PDF

Cu-based catalysts currently offer the most promising route to actively and selectively produce value-added chemicals via electrochemical reduction of CO (eCOR); yet further improvements are required for their wide-scale deployment in carbon mitigation efforts. Here, we systematically investigate a family of dilute Cu-based alloys to explore their viability as active and selective catalysts for eCOR through a combined theoretical-experimental approach. Using a quantum-classical modeling approach that accounts for dynamic solvation effects, we assess the stability and activity of model single-atom catalysts under eCOR conditions.

View Article and Find Full Text PDF

A reactive molecular dynamics approach is used to simulate cross-linking of acrylate polymer networks. By employing the same force field and reactive scheme and studying three representative multifunctional acrylate monomers, we isolate the importance of the nonreactive moieties within these model monomers. Analyses of reactive trajectories benchmark the estimated gel points, cyclomatic character, and spatially resolved cross-linking tendencies of the acrylates as a function of conversion.

View Article and Find Full Text PDF

Here, we report a concept that allows the integration of the characteristic properties of [60]fullerene in 3D graphene networks. In these systems, graphene provides high electrical conductivity and surface area while fullerenes add high electron affinity. We use molecular design to optimize the interaction between 3D graphene networks and fullerenes, specifically in the context of stability and charge transfer in an electrochemical environment.

View Article and Find Full Text PDF

Understanding and controlling the electrical response at a complex electrode-electrolyte interface is key to the development of next-generation supercapacitors and other electrochemical devices. In this work, we apply a theoretical framework based on the effective screening medium and reference interaction site model to explore the role of electrical double-layer (EDL) formation and its interplay with quantum capacitance in graphene-based supercapacitors. In addition to pristine graphene, we investigate a novel C-modified graphene supercapacitor material, which promises higher charge-storage capacity.

View Article and Find Full Text PDF

Monolithic nanoporous metals, derived from dealloying, have a unique bicontinuous solid/void structure that provides both large surface area and high electrical conductivity, making them ideal candidates for various energy applications. However, many of these applications would greatly benefit from the integration of an engineered hierarchical macroporous network structure that increases and directs mass transport. We report on 3D (three-dimensional)-printed hierarchical nanoporous gold (3DP-hnp-Au) with engineered nonrandom macroarchitectures by combining 3D printing and dealloying.

View Article and Find Full Text PDF

Compared to tedious, multi-step treatments for electroless gold plating of traditional thermoplastics, this communication describes a simpler three-step procedure for 3D printed crosslinked polyacrylate substrates. This allows for the synthesis of ultralight gold foam microlattice materials with great potential for architecture-sensitive applications in future energy, catalysis, and sensing.

View Article and Find Full Text PDF

Two-photon lithography (TPL) is a high-resolution additive manufacturing (AM) technique capable of producing arbitrarily complex three-dimensional (3D) microstructures with features 2-3 orders of magnitude finer than human hair. This process finds numerous applications as a direct route toward the fabrication of novel optical and mechanical metamaterials, miniaturized optics, microfluidics, biological scaffolds, and various other intricate 3D parts. As TPL matures, metrology and inspection become a crucial step in the manufacturing process to ensure that the geometric form of the end product meets design specifications.

View Article and Find Full Text PDF

Many application-relevant properties of nanoporous metals critically depend on their multiscale architecture. For example, the intrinsically high step-edge density of curved surfaces at the nanoscale provides highly reactive sites for catalysis, whereas the macroscale pore and grain morphology determines the macroscopic properties, such as mass transport, electrical conductivity, or mechanical properties. In this work, we systematically study the effects of alloy composition and dealloying conditions on the multiscale morphology of nanoporous copper (np-Cu) made from various commercial Zn-Cu precursor alloys.

View Article and Find Full Text PDF

Bimetallic, nanostructured materials hold promise for improving catalyst activity and selectivity, yet little is known about the dynamic compositional and structural changes that these systems undergo during pretreatment that leads to efficient catalyst function. Here we use ozone-activated silver-gold alloys in the form of nanoporous gold as a case study to demonstrate the dynamic behaviour of bimetallic systems during activation to produce a functioning catalyst. We show that it is these dynamic changes that give rise to the observed catalytic activity.

View Article and Find Full Text PDF

Two photon polymerization (TPP) is a precise, reliable, and increasingly popular technique for rapid prototyping of micro-scale parts with sub-micron resolution. The materials of choice underlying this process are predominately acrylic resins cross-linked via free-radical polymerization. Due to the nature of the printing process, the derived parts are only partially cured and the corresponding mechanical properties, i.

View Article and Find Full Text PDF

Decreasing energy consumption in the production of platform chemicals is necessary to improve the sustainability of the chemical industry, which is the largest consumer of delivered energy. The majority of industrial chemical transformations rely on catalysts, and therefore designing new materials that catalyse the production of important chemicals via more selective and energy-efficient processes is a promising pathway to reducing energy use by the chemical industry. Efficiently designing new catalysts benefits from an integrated approach involving fundamental experimental studies and theoretical modelling in addition to evaluation of materials under working catalytic conditions.

View Article and Find Full Text PDF

Hollow spheres with uniform coatings on the inner surface have applications in optical devices, time- or site-controlled drug release, heat storage devices, and target fabrication for inertial confinement fusion experiments. The fabrication of uniform coatings, which is often critical for the application performance, requires precise understanding and control over the coating process and its parameters. Here, we report on in situ real-time radiography experiments that provide critical spatiotemporal information about the distribution of fluids inside hollow spheres during uniaxial rotation.

View Article and Find Full Text PDF

Efforts to assemble graphene into three-dimensional monolithic structures have been hampered by the high cost and poor processability of graphene. Additionally, most reported graphene assemblies are held together through physical interactions (e.g.

View Article and Find Full Text PDF

Libraries of nanostructured materials on a single chip are a promising platform for high throughput and combinatorial studies of structure-property relationships in the fields of physics and biology. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a nanostructured material specifically suited for such studies because of its self-similar thermally induced coarsening behavior. However, traditional heat application techniques for the modification of np-Au are bulk processes that cannot be used to generate a library of different pore sizes on a single chip.

View Article and Find Full Text PDF

Designing neural interfaces that maintain close physical coupling of neurons to an electrode surface remains a major challenge for both implantable and in vitro neural recording electrode arrays. Typically, low-impedance nanostructured electrode coatings rely on chemical cues from pharmaceuticals or surface-immobilized peptides to suppress glial scar tissue formation over the electrode surface (astrogliosis), which is an obstacle to reliable neuron-electrode coupling. Nanoporous gold (np-Au), produced by an alloy corrosion process, is a promising candidate to reduce astrogliosis solely through topography by taking advantage of its tunable length scale.

View Article and Find Full Text PDF

Much progress has recently been made in the development of active materials, electrode morphologies and electrolytes for lithium ion batteries. Well-defined studies on size effects of the three-dimensional (3D) electrode architecture, however, remain to be rare due to the lack of suitable material platforms where the critical length scales (such as pore size and thickness of the active material) can be freely and deterministically adjusted over a wide range without affecting the overall 3D morphology of the electrode. Here, we report on a systematic study on length scale effects on the electrochemical performance of model 3D np-Au/TiO2 core/shell electrodes.

View Article and Find Full Text PDF

The synthesis of ultralow-density (>5 mg/cm(3) ) bulk materials with interconnected nanotubular morphology and deterministic, fully tunable feature size, composition, and density is presented. A thin-walled nanotubular design realized by employing templating based on atomic layer deposition makes the material about 10 times stronger and stiffer than aerogels of the same density.

View Article and Find Full Text PDF