Publications by authors named "Juen-Kai Wang"

The challenge faced in optoelectronic applications of halide perovskites is their degradation. Minimizing material imperfections is critical to averting cascade degradation processes. Identifying causes of such imperfections is, however, hindered by mystified growth processes and is particularly urgent for mixed-halide perovskites because of inhomogeneity in growth and phase segregation under stresses.

View Article and Find Full Text PDF

Bloodstream infections are a growing public health concern due to emerging pathogens and increasing antimicrobial resistance. Rapid antibiotic susceptibility testing (AST) is urgently needed for timely and optimized choice of antibiotics, but current methods require days to obtain results. Here, we present a general AST protocol based on surface-enhanced Raman scattering (SERS-AST) for bacteremia caused by eight clinically relevant Gram-positive and Gram-negative pathogens treated with seven commonly administered antibiotics.

View Article and Find Full Text PDF

Electronic cigarettes have rapidly gained acceptance recently. Nicotine-containing electronic cigarette liquids (e-liquids) are prohibited in some countries, but are permitted and simply available online in others. A rapid detection method is therefore required for on-site inspection or screening of a large amount of samples.

View Article and Find Full Text PDF

Antimicrobial susceptibility testing (AST) is a key measure in clinical microbiology laboratories to enable appropriate antimicrobial administration. During an AST, the determination of the minimum inhibitory concentration (MIC) is an important step in which the bacterial responses to an antibiotic at a series of concentrations obtained in separate bacterial growth chambers or sites are compared. However, the preparation of different antibiotic concentrations is time-consuming and labor-intensive.

View Article and Find Full Text PDF

Bulk heterojunction is one key concept leading to breakthrough in organic photovoltaics. The active layer is expectantly formed of distinct morphologies that carry out their respective roles in photovoltaic performance. The morphology-performance relationship however remains stymied, because unequivocal morphology at the nanoscale is not available.

View Article and Find Full Text PDF

Bloodstream infection (BSI) is a serious public health issue worldwide. Timely and effective antibiotics for controlling infection are crucial towards patient outcomes. However, the current culture-based methods of identifying bacteria and antimicrobial susceptibility testing (AST) remain labor-intensive and time-consuming, and are unable to provide early support to physicians in critical hours.

View Article and Find Full Text PDF

Identifying and quantifying chromium in water are important for the protection of precious water resources from chromium pollution. Standard methods however are unable to easily distinguish toxic hexavalent chromium, Cr(VI), from innocuous trivalent chromium, Cr(III), are time-consuming, or require large sample quantity. We show in this report that Cr(VI) and Cr(III) in water can be differentiated based on their distinct spectral features of surface-enhanced Raman scattering (SERS).

View Article and Find Full Text PDF

Tuberculosis caused by complex (MTBC) is one of the major infectious diseases in the world. Identification of MTBC and differential diagnosis of nontuberculous mycobacteria (NTM) species impose challenges because of their taxonomic similarity. This study describes a differential diagnosis method using the surface-enhanced Raman scattering (SERS) measurement of molecules released by species.

View Article and Find Full Text PDF

Blood stream infection is one of the major public health issues characterized with high cost and high mortality. Timely effective antibiotics usage to control infection is crucial for patients' survival. The standard microbiological diagnosis of infection however can last days.

View Article and Find Full Text PDF

The antibiotic susceptibility test (AST) is a general laboratory procedure for bacterial identification and characterization and can be utilized to determine effective antimicrobials for individual patients. Due to the low bacterial concentration, conventional AST usually requires a prolonged bacterial culture time and a labor-intensive sample pretreatment process. Therefore, it cannot perform timely diagnosis or treatment, which results in a high mortality rate for seriously infected patients.

View Article and Find Full Text PDF

Nicotine-containing electronic cigarette liquid (e-liquid) is prohibited in many countries, creating requirements for rapid detection approaches for on-site inspection or screening for large amounts of samples. Here, we demonstrate a simple way to identify nicotine using surface-enhanced Raman scattering (SERS) with substrates made of silver nanoparticle arrays imbedded in anodic aluminum oxide nanochannels (Ag/AAO). Compared with the reported colloidal nanoparticle-based SERS, that required serial dilutions to enable colloid aggregation in the viscous e-liquid, a small amount of undiluted e-liquid sample can be directly added onto our solid-phase Ag/AAO substrate without any pre-treatment.

View Article and Find Full Text PDF

Antibiotic susceptibility test (AST) is essential in clinical diagnosis of serious bacterial infection, such as sepsis, while it typically takes 2-5 days for sample culture, antibiotic treatment, and reading result. Detecting metabolites secreted from bacteria with surface-enhanced Raman scattering (SERS) enables rapid determination of antibiotic susceptibility, reducing the AST time to 1-2 days. However, it still requires 1 day of culture time to obtain sufficient quantity of bacteria for sample washing, bacterial extraction, and antibiotic treatment.

View Article and Find Full Text PDF

Four new donor-acceptor-acceptor (D-A-A) type molecules (DTCPB, DTCTB, DTCPBO, and DTCTBO), wherein benzothiadiazole or benzoxadiazole serves as the central A bridging triarylamine (D) and cyano group (terminal A), have been synthesized and characterized. The intramolecular charge-transfer character renders these molecules with strong visible light absorption and forms antiparallel dimeric crystal packing with evident π-π intermolecular interactions. The characteristics of the vacuum-processed photovoltaic device with a bulk heterojunction active layer employing these molecules as electronic donors combining C as electronic acceptor were examined and a clear structure-property-performance relationship was concluded.

View Article and Find Full Text PDF

Recently, specific biomarkers in the surface-enhanced Raman scattering (SERS) spectra of bacteria have been successfully exploited for rapid bacterial antibiotic susceptibility testing (AST) - dubbed SERS-AST. The biomolecules responsible for these bacterial SERS biomarkers have been identified as several purine derivative metabolites involved in bacterial purine salvage pathways (W. R.

View Article and Find Full Text PDF
Article Synopsis
  • The paper discusses the creation of nanoarrays using silver nanoparticles (AgNPs) for surface-enhanced Raman scattering (SERS) applications.
  • The AgNPs were fabricated on porous anodic aluminum oxide (AAO) templates using electrochemical plating, with meticulous adjustments made to their size and gaps for optimal SERS signals.
  • Results show that the technique yields reproducible SERS readings for various compounds, achieving low detection limits for important biomolecules, which demonstrates its potential for practical uses in DNA analysis.
View Article and Find Full Text PDF

In this work, graphene-methylammonium lead iodide (MAPbI) perovskite hybrid phototransistors fabricated by sequential vapor deposition are demonstrated. Ultrahigh responsivity of 1.73 × 10 A W and detectivity of 2 × 10 Jones are achieved, with extremely high effective quantum efficiencies of about 10% in the visible range (450-700 nm).

View Article and Find Full Text PDF

A new concept for organic light-emitting diodes (OLEDs) is presented, which is called exciplex-sensitized triplet-triplet annihilation (ESTTA). The exciplex formed at the organic heterojunction interface of 4,4',4″-tris(N-3-methyphenyl-N-phenyl-amino) triphenylamine and 9,10-bis(2'-naphthyl) anthracene (ADN) is used to sensitize the triplet-triplet annihilation (TTA) process on the ADN molecules. This results in a turn-on voltage (2.

View Article and Find Full Text PDF

Applications of quantum dots (QDs) are often obstructed by the associated surface electronic states that quench photoluminescence (PL) and hinder charge transport. Preventing this is still largely being stymied owing to the lack of means to regulate their presence. Dispersing PbS QDs in toluene, we show that varying the solvent temperature offers a way of modulating their surface electronic state.

View Article and Find Full Text PDF

We acquired the Raman spectra of adenine in powder and aqueous phase using excitation lasers with 532, 633, and 785 nm wavelengths for the region between 300 and 1500 cm. In comparison to the most distinct peak at 722 cm, the peaks between 1200 and 1500 cm exhibited a characteristic increase in cross-section with decreasing excitation wavelength in both phases. This trend can be reproduced by different density functional theory (DFT) calculations for the adenine molecule in the gas phase as well as in the aqueous phase.

View Article and Find Full Text PDF

Rapid bacterial antibiotic susceptibility test (AST) and minimum inhibitory concentration (MIC) measurement are important to help reduce the widespread misuse of antibiotics and alleviate the growing drug-resistance problem. We discovered that, when a susceptible strain of Staphylococcus aureus or Escherichia coli is exposed to an antibiotic, the intensity of specific biomarkers in its surface-enhanced Raman scattering (SERS) spectra drops evidently in two hours. The discovery has been exploited for rapid AST and MIC determination of methicillin-susceptible S.

View Article and Find Full Text PDF

In this study, multifunctional hybrid nanoparticles composed of iron platinum (FePt), silica (SiO2), and gold nanoparticles (AuNPs) had been developed for surface-enhanced Raman scattering (SERS) application. Core-shell structure of SiO2 and FePt nanoparticles (FePt@SiO2) was fabricated through sol-gel process and then immobilized gold nanoparticles onto the surface of FePt@SiO2, which displays huge Raman enhancement effect and magnetic separation capability. The resulting core-shell nanoparticles were subject to evaluation by transmission electron microscopy (TEM), Energy-dispersive X-ray spectroscopy (EDX), zeta potential measurement, and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

In this research, graphene nanosheets were functionalized with cationic poly (diallyldimethylammonium chloride) (PDDA) and citrate-capped gold nanoparticles (AuNPs) for surface-enhanced Raman scattering (SERS) bio-detection application. AuNPs were synthesized by the traditional citrate thermal reduction method and then adsorbed onto graphene-PDDA nanohybrid sheets with electrostatic interaction. The nanohybrids were subject to characterization including X-ray diffraction (XRD), transmission electron microscopy (TEM), zeta potential, and X-ray photoelectron spectroscopy (XPS).

View Article and Find Full Text PDF

A continuum background is always coincident with the Raman spectrum enhanced by metallic nanostructures and still remains elusive. Not only does it constitute a stymied mystery in the origin per se, but also it reduces the useful quantifiable range of detection based on surface-enhanced Raman scattering (SERS). We examined theoretically near-field molecule-metal interaction to reveal its contribution to the SERS background.

View Article and Find Full Text PDF

The addition of copper chlorophyll and its derivatives (Cu-Chl) to vegetable oils to disguise them as more expensive oils, such as virgin olive oils, would not only create public confusion, but also disturb the olive oil market. Given that existing detection methods of Ch-Chl in oils, such as LC-MS are costly and time consuming, it is imperative to develop economical and fast analytical techniques to provide information quickly. This paper demonstrates a rapid analytical method based on surface-enhanced Raman spectroscopy (SERS) to detect Cu-Chl in vegetable oils; the spectroscopic markers of Cu-Chl are presented and a detection limit of 5 mg kg(-1) is demonstrated.

View Article and Find Full Text PDF

Nanowire-based plasmonic metamaterials exhibit many intriguing properties related to the hyperbolic dispersion, negative refraction, epsilon-near-zero behavior, strong Purcell effect, and nonlinearities. We have experimentally and numerically studied the electromagnetic modes of individual nanowires (meta-atoms) forming the metamaterial. High-resolution, scattering-type near-field optical microscopy has been used to visualize the intensity and phase of the modes.

View Article and Find Full Text PDF