Publications by authors named "Juebin Jin"

Ultrasound (US) based radiomics is susceptible to variations in scanners, sonographers. To retrospectively investigate the feasibility of an adapted cycle generative adversarial networks (CycleGAN) in the style transfer to improve US based radiomics in the prediction of lymph node metastasis (LNM) with images from multiple scanners for patients with early cervical cancer (ECC). The CycleGAN was firstly trained to transfer paired US phantom images from one US device to another one; the model was then further trained and tested with clinical US images of ECC by transferring images from four US devices to one specific device; finally, the adapted model was tested with its effects on the radiomics feature harmonization and accuracy of LNM prediction in US based radiomics for ECC patients.

View Article and Find Full Text PDF

Background: Automatic primary gross tumor volume (GTVp) segmentation for nasopharyngeal carcinoma (NPC) is a quite challenging task because of the existence of similar visual characteristics between tumors and their surroundings, especially on computed tomography (CT) images with severe low contrast resolution. Therefore, most recently proposed methods based on radiomics or deep learning (DL) is difficult to achieve good results on CT datasets.

Purpose: A peritumoral radiomics-guided generative adversarial network (PRG-GAN) was proposed to address this challenge.

View Article and Find Full Text PDF

Purpose: To develop a combined radiomics and deep learning (DL) model in predicting radiation esophagitis (RE) of a grade ≥ 2 for patients with esophageal cancer (EC) underwent volumetric modulated arc therapy (VMAT) based on computed tomography (CT) and radiation dose (RD) distribution images.

Materials And Methods: A total of 273 EC patients underwent VMAT were retrospectively reviewed and enrolled from two centers and divided into training (n = 152), internal validation (n = 66), and external validation (n = 55) cohorts, respectively. Radiomic and dosiomic features along with DL features using convolutional neural networks were extracted and screened from CT and RD images to predict RE.

View Article and Find Full Text PDF

Background And Purpose: Adjuvant treatments are valuable to decrease the recurrence rate and improve survival for early-stage cervical cancer patients (ESCC), Therefore, recurrence risk evaluation is critical for the choice of postoperative treatment. A magnetic resonance imaging (MRI) based radiomics nomogram integrating postoperative adjuvant treatments was constructed and validated externally to improve the recurrence risk prediction for ESCC.

Material And Methods: 212 ESCC patients underwent surgery and adjuvant treatments from three centers were enrolled and divided into the training, internal validation, and external validation cohorts.

View Article and Find Full Text PDF

Background: Preoperative stratification is critical for the management of patients with esophageal cancer (EC). To investigate the feasibility and accuracy of PET-CT-based radiomics in preoperative prediction of clinical and pathological stages for patients with EC.

Methods: Histologically confirmed 100 EC patients with preoperative PET-CT images were enrolled retrospectively and randomly divided into training and validation cohorts at a ratio of 7:3.

View Article and Find Full Text PDF

Background: Noninvasive and accurate prediction of lymph node metastasis (LNM) is very important for patients with early-stage cervical cancer (ECC). Our study aimed to investigate the accuracy and sensitivity of radiomics models with features extracted from both intra- and peritumoral regions in magnetic resonance imaging (MRI) with T2 weighted imaging (T2WI) and diffusion weighted imaging (DWI) for predicting LNM.

Methods: A total of 247 ECC patients with confirmed lymph node status were enrolled retrospectively and randomly divided into training (n = 172) and testing sets (n = 75).

View Article and Find Full Text PDF

Purpose: To predict the voxel-based dose distribution for postoperative cervical cancer patients underwent volumetric modulated arc therapy using deep learning models.

Method: A total of 254 patients with cervical cancer received volumetric modulated arc therapy in authors' hospital from January 2018 to September 2021 were enrolled in this retrospective study. Two deep learning networks (3D deep residual neural network and 3DUnet) were adapted to train (203 cases) and test (51 cases) the feasibility and effectiveness of the prediction method.

View Article and Find Full Text PDF

Background: Preoperative prediction of cervical lymph node metastasis in papillary thyroid carcinoma provided a basis for tumor staging and treatment decision. This study aimed to investigate the utility of machine learning and develop different models to preoperatively predict cervical lymph node metastasis based on ultrasonic radiomic features and clinical characteristics in papillary thyroid carcinoma nodules.

Methods: Data from 400 papillary thyroid carcinoma nodules were included and divided into training and validation group.

View Article and Find Full Text PDF

To investigate the effects of different ultrasonic machines on the performance of radiomics models using ultrasound (US) images in the prediction of lymph node metastasis (LNM) for patients with cervical cancer (CC) preoperatively. A total of 536 CC patients with confirmed histological characteristics and lymph node status after radical hysterectomy and pelvic lymphadenectomy were enrolled. Radiomics features were extracted and selected with US images acquired with ATL HDI5000, Voluson E8, MyLab classC, ACUSON S2000, and HI VISION Preirus to build radiomics models for LNM prediction using support vector machine (SVM) and logistic regression, respectively.

View Article and Find Full Text PDF

Purpose: An accurate and reliable target volume delineation is critical for the safe and successful radiotherapy. The purpose of this study is to develop new 2D and 3D automatic segmentation models based on RefineNet for clinical target volume (CTV) and organs at risk (OARs) for postoperative cervical cancer based on computed tomography (CT) images.

Methods: A 2D RefineNet and 3D RefineNetPlus3D were adapted and built to automatically segment CTVs and OARs on a total of 44 222 CT slices of 313 patients with stage I-III cervical cancer.

View Article and Find Full Text PDF

The purpose of this study is to investigate the effects of automatic segmentation algorithms on the performance of ultrasound (US) radiomics models in predicting the status of lymph node metastasis (LNM) for patients with early stage cervical cancer preoperatively. US images of 148 cervical cancer patients were collected and manually contoured by two senior radiologists. The four deep learning-based automatic segmentation models, namely U-net, context encoder network (CE-net), Resnet, and attention U-net were constructed to segment the tumor volumes automatically.

View Article and Find Full Text PDF

Noninvasive differentiating thyroid follicular adenoma from carcinoma preoperatively is of great clinical value to decrease the risks resulted from excessive surgery for patients with follicular neoplasm. The purpose of this study is to investigate the accuracy of ultrasound radiomics features integrating with ultrasound features in the differentiation between thyroid follicular carcinoma and adenoma. A total of 129 patients diagnosed as thyroid follicular neoplasm with pathologically confirmed follicular adenoma and carcinoma were enrolled and analyzed retrospectively.

View Article and Find Full Text PDF

Ultrasound (US) imaging has been recognized and widely used as a screening and diagnostic imaging modality for cervical cancer all over the world. However, few studies have investigated the U-net-based automatic segmentation models for cervical cancer on US images and investigated the effects of automatic segmentations on radiomics features. A total of 1102 transvaginal US images from 796 cervical cancer patients were collected and randomly divided into training (800), validation (100) and test sets (202), respectively, in this study.

View Article and Find Full Text PDF

Background: There is urgent need for an accurate preoperative prediction of metastatic status to optimize treatment for patients with ovarian cancer (OC). The feasibility of predicting the metastatic status based on radiomics features from preoperative computed tomography (CT) images alone or combined with clinical factors were investigated.

Methods: A total of 101 OC patients who underwent primary debulking surgery were enrolled.

View Article and Find Full Text PDF

Objectives: Non-invasive method to predict the histological subtypes preoperatively is essential for the overall management of ovarian cancer (OC). The feasibility of radiomics in the differentiating of epithelial ovarian cancer (EOC) and non-epithelial ovarian cancer (NEOC) based on computed tomography (CT) images was investigated.

Methods: Radiomics features were extracted from preoperative CT for 101 patients with pathologically proven OC.

View Article and Find Full Text PDF

Few studies have reported the reproducibility and stability of ultrasound (US) images based radiomics features obtained from automatic segmentation in oncology. The purpose of this study is to study the accuracy of automatic segmentation algorithms based on multiple U-net models and their effects on radiomics features from US images for patients with ovarian cancer. A total of 469 US images from 127 patients were collected and randomly divided into three groups: training sets (353 images), validation sets (23 images), and test sets (93 images) for automatic segmentation models building.

View Article and Find Full Text PDF

Prognostic parameters and models were believed to be helpful in improving the treatment outcome for patients with brain metastasis (BM). The purpose of this study was to investigate the feasibility of computer tomography (CT) radiomics based nomogram to predict the survival of patients with BM from non-small cell lung cancer (NSCLC) treated with whole brain radiotherapy (WBRT). A total of 195 patients with BM from NSCLC who underwent WBRT from January 2012 to December 2016 were retrospectively reviewed.

View Article and Find Full Text PDF

Objectives: It is of high clinical importance to identify the primary lesion and its pathological types for patients with brain metastases (BM). The purpose of this study is to investigate the feasibility and accuracy of differentiating the primary adenocarcinoma (AD) and squamous cell carcinoma (SCC) of non-small-cell lung cancer (NSCLC) for patients with BM based on radiomics from brain contrast-enhanced computer tomography (CECT) images.

Methods: A total of 144 BM patients (94 male, 50 female) were enrolled in this study with 102 with primary lung AD and 42 with SCC, respectively.

View Article and Find Full Text PDF

Objective: To investigate the feasibility of a noninvasive detection of lymph node metastasis (LNM) for early-stage cervical cancer (ECC) patients with radiomics methods based on the textural features from ultrasound images.

Methods: One hundred seventy-two ECC patients between January 2014 and September 2018 with pathologically confirmed lymph node status (LNS) and preoperative ultrasound images were retrospectively reviewed. Regions of interest (ROIs) were delineated by a senior radiologist in the ultrasound images.

View Article and Find Full Text PDF

Background: Controversial conclusions had been reported in studies trying to confirm the impact of heart dose on overall survival (OS) reported in RTOG 0167 for non-small cell lung cancer (NSCLC) patients who underwent radiotherapy (RT). The purpose of this study is to investigate the association of lung and heart dosimetric parameters with OS in NSCLC patients treated by volumetric modulated arc therapy (VMAT).

Methods: Inoperable NSCLC patients treated by VMAT from March 2012 to December 2015 were retrospectively reviewed.

View Article and Find Full Text PDF

Purpose: To investigate the treatment response prediction feasibility and accuracy of an integrated model combining computed tomography (CT) radiomic features and dosimetric parameters for patients with esophageal cancer (EC) who underwent concurrent chemoradiation (CRT) using machine learning.

Methods: The radiomic features and dosimetric parameters of 94 EC patients were extracted and modeled using Support Vector Classification (SVM) and Extreme Gradient Boosting algorithm (XGBoost). The 94-sample dataset was randomly divided into a 70-sample training subset and a 24-sample independent test set while keeping the class proportions intact via stratification.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionrm9nu944nnp17r6n6vf5705lhvjipori): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once