Publications by authors named "Jue Kou"

To explore green gold leaching reagents, a series of imidazolium cyanate ionic liquids (ILs), 1-ethyl-3-methyl-imidazolium cyanate ([CMIM][OCN]), 1-propyl-3-methyl-imidazolium cyanate ([CMIM][OCN]) and 1-butyl-3-methyl-imidazolcyanate ([CMIM][OCN]) were synthesized and characterized by Nuclear Magnetic Resonance (NMR), Fourier Transform Infrared Spectroscopy (FTIR) and thermogravimetric (TG) analysis. In this research, the imidazolium cyanates were utilized as a solute, which not only decreased the usage of ILs but also increased their gold dissolution capability. The gold dissolution performances of three imidazolium cyanates were characterized by dynamic leaching test and Scanning Electron Microscopy (SEM).

View Article and Find Full Text PDF

For over two hundred years, cyanide has served as the primary reagent for gold extraction. However, due to its high toxicity, the use of cyanide poses significant risks. Traditional low-toxicity leaching reagents have limitations that restrict their widespread industrial application, leading to the necessity for the development of new, efficient, and low-toxic gold leaching reagents to support sustainable gold production.

View Article and Find Full Text PDF

Hydrogen bonds play an important role in the interaction between surfactants. In this study, the effect of three different ethoxylated alcohols (OP-10, NP-10, AEO-9) on the collecting behavior of sodium oleate (NaOL) in the flotation of quartz was investigated. To explore the mechanism, the hydrogen bond between ethoxylated alcohols and NaOL was analyzed using molecular dynamics (MD) simulation.

View Article and Find Full Text PDF

For effective removal and utilization of fluorine resources from industrial wastewater, stepwise removal and recovery of fluorine were accomplished by seeding crystallization and flotation. The effects of seedings on the growth and morphology of CaF crystals were investigated by comparing the processes of chemical precipitation and seeding crystallization. The morphologies of the precipitates were analyzed by X-ray diffraction (XRD) and scanning electron microscope (SEM) measurements.

View Article and Find Full Text PDF

Gold leaching is an important process to extract gold from ore. Conventional alkaline cyanide process and alternative nontoxic lixiviants including thiosulfate, thiourea, thiocyanate, and halogen have been widely investigated. However, density functional theory (DFT) study on the gold complexes Au(CN), Au(SO), Au[SC(NH)], Au(SCN), and AuCl required for discovering and designing new highly efficient and environmentally friendly gold leaching reagents is lacking, which is expected to support constructive information for the discovery and designation of new high-efficiency and environmentally friendly gold leaching reagents.

View Article and Find Full Text PDF

In this study, the effect of surfactants and electrolytes on stability of kaolinite dispersions was analyzed by measuring suspension transmittance, zeta potential, and adsorption. It was experimentally found that the compression of kaolinite electric double layer caused by NaCl addition may reduce the electrostatic repulse force to facilitate the aggregation of kaolinite particles. Surfactant facilitate the aggregation of kaolinite particles mainly through the adsorption of it on the surface of kaolinite to generate hydrophobic force.

View Article and Find Full Text PDF

Recycling precious metals from secondary resources is of great environmental and economic significance. In this study, the Zr-based MOFs UiO-66-NH was synthesized and used to adsorb Au (III) in aqueous solution. The ultrafine particle size (∼50 nm), excellent crystallinity and huge specific surface area (1039.

View Article and Find Full Text PDF

The roles of cationic and anionic surfactants in assembling reduced graphene oxide hydrogels (RGOHs) and controlling their porous structures are studied in this work. The mechanisms of the surfactant effects were studied by x-ray diffraction, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, and electrochemical methods. The morphology and structure of graphene oxide and RGOH were examined by atomic force microscopy, scanning electron microscopy, and transmission electron microscopy.

View Article and Find Full Text PDF