Publications by authors named "Judy Y Su"

The receptor(s) used by cannabinoids to relax vascular smooth muscle is unknown. Here, we investigated the effects of 2-arachidonylglyceryl ether (2-AG ether), a metabolically stable endocannabinoid, and abnormal cannabidiol (abn-CBD) on relaxation of permeabilized pulmonary arterial strips monitored with force, and on extracellular signal-regulated mitogen-activated protein kinases (ERK1/2) phosphorylation in permeabilized vascular smooth muscle cells using immunoblotting. We found that 2-AG ether and abn-CBD caused relaxation and increased phosphorylation of ERK1/2.

View Article and Find Full Text PDF

Background: This study examined the responsiveness of skinned pulmonary arteries from newborn rabbit to volatile anesthetics and the role of protein kinase C (PKC), Ca2+/calmodulin-dependent protein kinase II (CaMKII), and the downstream effectors, mitogen-activated protein kinases (ERK1/2 and p38).

Methods: Pulmonary arterial strips from 9- to 12-day-old rabbits were mounted on force transducers and treated with saponin ("skinned" strips). The skinned strips were activated by pCa 6.

View Article and Find Full Text PDF

Background: Previously, the authors have shown in Ca(2+)-clamped skinned arterial strips that protein kinase C (PKC) plays a role in 3% halothane- or isoflurane-increased force. PKC in the pulmonary artery and Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) in the femoral artery have been implicated in isoflurane-induced relaxation. For this study, the authors used clinical concentrations of halothane to examine the role of PKC and CaMKII in the halothane-induced biphasic effect on contraction in skinned pulmonary arterial strips.

View Article and Find Full Text PDF

Background: Activation or inhibition of protein kinase C (PKC) has been implicated in the anesthetic-induced contraction or relaxation of different types of arteries. In skinned pulmonary arterial strips, the initial halothane-induced contraction has been attributed to PKC activation, but the subsequent relaxation has not. Whether isoflurane has a similar biphasic effect is not known.

View Article and Find Full Text PDF

Background: Protein kinase C (PKC) and Ca(2+)-calmodulin-dependent protein kinase II (CaMKII) have been implicated in isoflurane-increased force in skinned femoral arterial strips. The extracellular signal-regulated kinases (ERK1/2) of mitogen-activated protein kinase have been shown to be target effectors of PKC and CaMKII. This study examined the role of the ERK1/2 signaling pathway in isoflurane activation of PKC and CaMKII using cultured vascular smooth muscle cells.

View Article and Find Full Text PDF