The purpose of this study is to evaluate the biodistribution properties of random-copolymer-based core-cross-linked nanogels of various sizes and surface poly(ethylene glycol) composition. Systematic variations of near-IR labeled nanogels, comprising varying particle sizes (28-135 nm), PEG corona quantity (0-50 mol %), and PEG length (PEG M 1000, 2000, and 5000), were prepared and injected in mice that had been subcutaneously implanted with MDA-MB-231-luc-D3H2LN human mammary carcinoma. In vivo biodistribution was obtained using fluorescence molecular tomography imaging at 0, 6, 24, 48, and 72 h postinjection.
View Article and Find Full Text PDFConjugation of biologically active proteins to polymeric materials is of great interest in the treatment of cancer and other diseases of protein deficiency. The conjugation of such biomacromolecules is challenging both due to their hydrophilicity and propensity to denature under non-native conditions. We describe a novel reactive self-assembly approach to "wrap" a protein with polymers, simultaneously protecting its delicate folded state and silencing its enzymatic activity.
View Article and Find Full Text PDFIn this review, we outline examples that illustrate the design criteria for achieving macromolecular assemblies that incorporate a combination of two or more chemical, physical or biological stimuli-responsive components. Progress in both fundamental investigation into the phase transformations of these polymers in response to multiple stimuli and their utilization in a variety of practical applications are highlighted. Using these examples, we aim to explain the origin of employed mechanisms of stimuli responsiveness which may serve as a guideline to inspire future design of multi-stimuli responsive materials.
View Article and Find Full Text PDFIn this review we put the spotlight on crosslinked polymer nanogels, a promising platform that has the characteristics of an "ideal" drug delivery vehicle. Some of the key aspects of drug delivery vehicle design like stability, response to biologically relevant stimuli, passive targeting, active targeting, toxicity and ease of synthesis are discussed. We discuss several delivery systems in this light and highlight some examples of systems, which satisfy some or all of these design requirements.
View Article and Find Full Text PDFAmphiphilic polymers of different hydrophilic-lipophilic ratios were prepared by free radical polymerization using two monomers consisting of triethylene glycol as the hydrophilic part and an alkyl chain connected by disulfide bond as the hydrophobic part. These polymers form micelle-like nanoassemblies in aqueous media and can encapsulate hydrophobic drug molecules up to 14% of their mass. In a reducing environment, these polymeric micelles disassemble and dissolve in water, since the amphiphilic polymers are converted into hydrophilic polymers upon cleavage of the disulfide bond.
View Article and Find Full Text PDF