Flash nanoprecipitation (FNP) is a turbulent mixing process capable of reproducibly producing polymer nanoparticles loaded with active pharmaceutical ingredients (APIs). The nanoparticles produced with this method consist of a hydrophobic core surrounded by a hydrophilic corona. FNP produces nanoparticles with very high loading levels of nonionic hydrophobic APIs.
View Article and Find Full Text PDFBackground: The clustered regularly interspaced short palindromic repeats (CRISPR) and Cas9 protein system is a revolutionary tool for gene therapy. Despite promising reports of the utility of CRISPR-Cas9 for in vivo gene editing, a principal problem in implementing this new process is delivery of high molecular weight DNA into cells.
Results: Using poly(lactic-co-glycolic acid) (PLGA), a nanoparticle carrier was designed to deliver a model CRISPR-Cas9 plasmid into primary bone marrow derived macrophages.
Targeted drug delivery has great potential for improving therapeutic outcomes for many diseases. Polymeric nanocarriers can improve the targeted delivery of insoluble and toxic drugs but, to achieve this, it is important to tailor the particle properties. In this study, nanoparticles comprised of poly(ethylene oxide)- b-poly(d,l-lactic acid) (PEO- b-PDLLA) were made by flash nanoprecipitation while varying the compositions of the additives poly(l-lactic acid) (PLLA), a fluorophore 6,13-bis(triisopropylsylylethynyl) (TIPS) pentacene, and poly(acrylic acid)- b-poly(d,l-lactic acid) (PAA- b-PDLLA) to characterize their effects on size, ζ potential, fluorescence, and surface functionalization.
View Article and Find Full Text PDFTwo series of high molecular weight disulfonated poly(arylene ether sulfone) random copolymers were synthesized as proton exchange membranes for high-temperature water electrolyzers. These copolymers differ based on the position of the ether bonds on the aromatic rings. One series is comprised of fully para-substituted hydroquinone comonomer, and the other series incorporated 25 mol % of a meta-substituted comonomer resorcinol and 75 mol % hydroquinone.
View Article and Find Full Text PDFNanoparticle based drug delivery platforms have the potential to transform disease treatment paradigms and therapeutic strategies, especially in the context of pulmonary medicine. Once administered, nanoparticles disperse throughout the lung and many are phagocytosed by macrophages. However, there is a paucity of knowledge regarding cellular up-take dynamics of nanoparticles due largely to macrophage heterogeneity.
View Article and Find Full Text PDFMotion of micron and sub-micron size magnetic particles in alternating magnetic fields can activate mechanosensitive cellular functions or physically destruct cancer cells. However, such effects are usually observed with relatively large magnetic particles (>250 nm) that would be difficult if at all possible to deliver to remote sites in the body to treat disease. Here we show a completely new mechanism of selective toxicity of superparamagnetic nanoparticles (SMNP) of 7 to 8 nm in diameter to cancer cells.
View Article and Find Full Text PDFGiven the superior soft tissue contrasts obtained by MRI and the long residence times of magnetic nanoparticles (MNPs) in soft tissues, MNP-based theranostic systems are being developed for simultaneous imaging and treatment. However, development of such theranostic nanoformulations presents significant challenges of balancing the therapeutic and diagnostic functionalities in order to achieve optimum effect from both. Here we developed a simple theranostic nanoformulation based on magnetic nanoclusters (MNCs) stabilized by a bisphosphonate-modified poly(glutamic acid)--(ethylene glycol) block copolymer and complexed with cisplatin.
View Article and Find Full Text PDFNanoparticle-based therapeutic agents can in some cases provide selective delivery to tumors, yet this field would greatly benefit from more detailed understanding of particle transport into and within tumor tissue. To provide fundamental information for optimizing interstitial transport of polymeric nanoparticles, we have developed a quantitative approach employing real-time analysis of nanoparticle diffusion into bulk biological hydrogels using microMRI. We use two distinct imaging approaches to probe the migration of two novel "theranostic" polymeric agents (combining drug delivery and contrast agent functions) into bulk hydrogels.
View Article and Find Full Text PDFWe report the fabrication of magnetic particles comprised of clusters of iron oxide nanoparticles, 7.4 nm mean diameter, stabilized by a biocompatible, amphiphilic diblock copolymer, poly(ethylene oxide-b-D,L-lactide). Particles with quantitative incorporation of up to 40 wt % iron oxide and hydrodynamic sizes in the range of 80-170 nm were prepared.
View Article and Find Full Text PDFUnderstanding the fundamental properties of macromolecules has enhanced the development of emerging technologies used to improve biomedical research. Currently, there is a critical need for innovative platforms that can illuminate the function of biomedical reagents in a native environment. To address this need, we have developed an in situ approach to visualize the dynamic behavior of biomedically relevant macromolecules at the nanoscale.
View Article and Find Full Text PDFwerden Enzyme, die auf magnetischen Nanopartikeln (MNPs) immobilisiert sind, beim Anlegen von magnetischen Feldern. Diese Veränderungen resultieren aus der erneuten Ausrichtung der MNPs im AC-Magnetfeld, die mit den MNP verknüpfte Polymerketten unter Belastung setzt. Für immobilisierte Enzymmoleküle auf einem MNP-Aggregat ergeben sich dadurch Deformationen und irreversible (oder lange anhaltende) Konformationsän-derungen.
View Article and Find Full Text PDFFEMS Microbiol Lett
July 2012
Intracellular pathogens like Salmonella evade host phagocytic killing by various mechanisms. Classical antimicrobial therapy requires multiple dosages and frequent administration of drugs for a long duration. Intracellular delivery of antimicrobials using nanoparticle may effectively devise therapies for bacterial infections.
View Article and Find Full Text PDFIron oxide magnetic nanoparticles are good candidates for magnetic resonance imaging (MRI) contrast agents due to their high magnetic susceptibilities. Here we investigate 19 polyether-coated magnetite nanoparticle systems comprising three series. All systems were synthesized from the same batch of magnetite nanoparticles.
View Article and Find Full Text PDFNovel hydrophilic triblock copolymers which form micelles in aqueous solution were studied by static and dynamic light scattering (SLS and DLS), small angle neutron scattering (SANS) and densitometry. The polymers were symmetric A-B-A block copolymers having two poly(ethylene oxide) (PEO) tail blocks and a polyurethane (PU) center segment that contained pendant carboxylic acids. The aggregation number of the micelles decreased with increasing PEO mass content.
View Article and Find Full Text PDFPluronic based core-shell nanostructures encapsulating gentamicin were designed in this study. Block copolymers of (PAA(+/-)Na-b-(PEO-b-PPO-b-PEO)-b-PAA(+/-)Na) were blended with PAA(-) Na(+) and complexed with the polycationic antibiotic gentamicin to form nanostructures. Synthesized nanostructures had a hydrodynamic diameter of 210 nm, zeta potentials of -0.
View Article and Find Full Text PDFMagnetic targeting is useful for intravascular or intracavitary drug delivery, including tumor chemotherapy or intraocular antiangiogenic therapy. For all such in vivo applications, the magnetic drug carrier must be biocompatible and nontoxic. In this work, we investigated the toxic properties of magnetic nanoparticles coated with polyethylenoxide (PEO) triblock copolymers.
View Article and Find Full Text PDFMagnetite (Fe3O4) nanoparticles have been synthesized and complexed with carboxylate-functional block copolymers, and then aqueous dispersions of the complexes were investigated as functions of their chemical and morphological structures. The block copolymer dispersants had either poly(ethylene oxide), poly(ethylene oxide-co-propylene oxide), or poly(ethylene oxide-b-propylene oxide) outer blocks, and all of them had a polyurethane center block that contained pendent carboxylate groups. The complexes were formed through interactions of the carboxylates with the surfaces of the magnetite nanoparticles.
View Article and Find Full Text PDFElectrospinning is a promising method to construct fused-fiber biomaterial scaffolds for tissue engineering applications, but the efficacy of this approach depends on how substrate topography affects cell function. Previously, it has been shown that linear, parallel raised features with length scales of 0.5-2 microm direct cell orientation through the phenomenon of contact guidance, and enhance phenotypic markers of osteoblastic differentiation.
View Article and Find Full Text PDFMixtures of a polyhedral oligomeric silsesquioxane, trisilanolisobutyl-POSS, and a polar silicone, poly(dimethyl-co-methylvinyl-co-methyl, 2-diphenyl phosphine oxide ethyl) siloxane (PDMS-PO), spread as Langmuir monolayers at the air/water interface are used to examine the surface phase behavior and aggregation of trisilanolisobutyl-POSS as a function of silicone composition. Analyses of the surface pressure-area per monomer (Pi-A) isotherms in terms of the collapse pressures and excess Gibbs free energies of mixing indicate the monolayers form slightly negative deviation mixtures. Direct observations of surface morphology with Brewster angle microscopy in the collapsed regime reveal that the governing factor for aggregation is the collapse Pi of the component with a stronger affinity for water.
View Article and Find Full Text PDF