Epoxyeicosatrienoic acids (EETs) are arachidonic acid metabolites of cytochrome P450 epoxygenase enzymes recognized as key players in vascular function and disease, primarily attributed to their potent vasodilator, anti-inflammatory and pro-angiogenic effects. Although EETs' actions in the central nervous system (CNS) appear to parallel those in peripheral tissue, accumulating evidence suggests that epoxyeicosanoid signaling plays different roles in neural tissue compared to peripheral tissue; roles that reflect distinct CNS functions, cellular makeup and intercellular relationships. This is exhibited at many levels including the expression of EETs-synthetic and -metabolic enzymes in central neurons and glial cells, EETs' role in neuro-glio-vascular coupling during cortical functional activation, the capacity for interaction between epoxyeicosanoid and neuroactive endocannabinoid signaling pathways, and the regulation of neurohormone and neuropeptide release by endogenous EETs.
View Article and Find Full Text PDFIntraluminal occlusion of the middle cerebral artery in rodents is widely used for investigating cerebral ischemia and reperfusion injury. Two types of filaments used for occlusion were tested in terms of surgical success, incidence of subarachnoid hemorrhage, and mortality: a standard 6-0 monofilament coated with methyl methacrylate glue (rigid probe) and an 8-0 monofilament coated with silicone (flexible probe). In 98 wild-type (WT) mice, the flexible probe produced significantly (P < .
View Article and Find Full Text PDFThe reason that estrogen is strongly protective in various estrogen-deficient animal models while seemingly detrimental in postmenopausal women remains unclear. It hypothesized that prolonged oral medroxyprogesterone (MPA) plus oral conjugated equine estrogens (CEE) diminishes estrogen ability to reduce stroke damage in the rodent stroke model. To test the hypothesis, we fed ovariectomized rats CEE or MPA, or a combination of CEE and MPA (CEP), before inducing 120 min of reversible focal stroke, using the intraluminal filament model.
View Article and Find Full Text PDFSpontaneously hypertensive stroke-prone rats (SHRSP), a model for genetic stroke susceptibility, suffer spontaneous stroke and enhanced injury after experimental stroke, in part due to abnormal cerebrovascular development. We hypothesized that angiopoietin system genes in SHRSP may follow unique patterns of expression after experimentally induced stroke. SHRSP, hypertensive control rats (SHR), and normotensive controls (WKY) were subjected to experimental middle cerebral artery occlusion, and brain RNA was analyzed for expression of angiogenic genes.
View Article and Find Full Text PDF