T cells are required to clear infection, and T cell motion plays a role in how quickly a T cell finds its target, from initial naive T cell activation by a dendritic cell to interaction with target cells in infected tissue. To better understand how different tissue environments affect T cell motility, we compared multiple features of T cell motion including speed, persistence, turning angle, directionality, and confinement of T cells moving in multiple murine tissues using microscopy. We quantitatively analyzed naive T cell motility within the lymph node and compared motility parameters with activated CD8 T cells moving within the villi of small intestine and lung under different activation conditions.
View Article and Find Full Text PDFElectronic cigarette (Ecig) use has become more common, gaining increasing acceptance as a safer alternative to tobacco smoking. However, the 2019 outbreak of Ecig and Vaping-Associated Lung Injury (EVALI) alerted the community to the potential for incorporation of deleterious ingredients such as vitamin E acetate into products without adequate safety testing. Understanding Ecig induced molecular changes in the lung and systemically can provide a path to safety assessment and protect consumers from unsafe formulations.
View Article and Find Full Text PDFViruses infect millions of people each year. Both endemic viruses circulating throughout the population as well as novel epidemic and pandemic viruses pose ongoing threats to global public health. Developing more effective tools to address viruses requires not only in-depth knowledge of the virus itself but also of our immune system's response to infection.
View Article and Find Full Text PDFA key question in SARS-CoV-2 infection is why viral loads and patient outcomes vary dramatically across individuals. Because spatial-temporal dynamics of viral spread and immune response are challenging to study in vivo, we developed Spatial Immune Model of Coronavirus (SIMCoV), a scalable computational model that simulates hundreds of millions of lung cells, including respiratory epithelial cells and T cells. SIMCoV replicates viral growth dynamics observed in patients and shows how spatially dispersed infections can lead to increased viral loads.
View Article and Find Full Text PDFThere are striking similarities between the strategies ant colonies use to forage for food and immune systems use to search for pathogens. Searchers (ants and cells) use the appropriate combination of random and directed motion, direct and indirect agent-agent interactions, and traversal of physical structures to solve search problems in a variety of environments. An effective immune response requires immune cells to search efficiently and effectively for diverse types of pathogens in different tissues and organs, just as different species of ants have evolved diverse search strategies to forage effectively for a variety of resources in a variety of habitats.
View Article and Find Full Text PDFThe NIH-funded center for autophagy research named Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence, located at the University of New Mexico Health Science Center is now completing its second year as a working center with a mission to promote autophagy research locally, nationally, and internationally. The center has thus far supported a cadre of 6 junior faculty (mentored PIs; mPIs) at a near-R01 level of funding. Two mPIs have graduated by obtaining their independent R01 funding and 3 of the remaining 4 have won significant funding from NIH in the form of R21 and R56 awards.
View Article and Find Full Text PDFTauopathies, including frontotemporal dementia (FTD) and Alzheimer's disease (AD) are progressive neurodegenerative diseases clinically characterized by cognitive decline and could be caused by the aggregation of hyperphosphorylated pathological tau (pTau) as neurofibrillary tangles (NFTs) inside neurons. There is currently no FDA-approved treatment that cures, slows or prevents tauopathies. Current immunotherapy strategies targeting pTau have generated encouraging data but may pose concerns about scalability, affordability, and efficacy.
View Article and Find Full Text PDFCD43 (leukosialin) is a large sialoglycoprotein abundantly expressed on the surface of most cells from the hematopoietic lineage. CD43 is directly involved in the contact between cells participating in a series of events such as signaling, adherence and host parasite interactions. In this study we examined the role of CD43 in the immune response against Trypanosoma cruzi, the protozoan parasite that causes Chagas' disease, a potential life-threatening illness endemic in 21 Latin American countries according to the WHO.
View Article and Find Full Text PDFActivating mutations in cytokine receptors and transcriptional regulators govern aberrant signal transduction in T-cell lineage acute lymphoblastic leukemia (T-ALL). However, the roles played by suppressors of cytokine signaling remain incompletely understood. We examined the regulatory roles of suppressor of cytokine signaling 5 (SOCS5) in T-ALL cellular signaling networks and leukemia progression.
View Article and Find Full Text PDFThe migratory capacity of adaptive CD8αβ T cells dictates their ability to locate target cells and exert cytotoxicity, which is the basis of immune surveillance for the containment of microbes and disease. The small intestine (SI) is the largest mucosal surface and is a primary site of pathogen entrance. Using two-photon laser scanning microscopy, we found that motility of antigen (Ag)-specific CD8αβ T cells in the SI is dynamic and varies with the environmental milieu.
View Article and Find Full Text PDFBackground: Fractalkine (CXCL1) and its receptor (CXCR1) play an important role in regulating microglial function. We have previously shown that Cxcr1 deficiency exacerbated tau pathology and led to cognitive impairment. However, it is still unclear if the chemokine domain of the ligand CXCL1 is essential in regulating neuronal tau pathology.
View Article and Find Full Text PDFT cells play a vital role in eliminating pathogenic infections. To activate, naïve T cells search lymph nodes (LNs) for dendritic cells (DCs). Positioning and movement of T cells in LNs is influenced by chemokines including CCL21 as well as multiple cell types and structures in the LNs.
View Article and Find Full Text PDFRecently, NIH has funded a center for autophagy research named the Autophagy, Inflammation, and Metabolism (AIM) Center of Biomedical Research Excellence, located at the University of New Mexico Health Science Center (UNM HSC), with aspirations to promote autophagy research locally, nationally, and internationally. The center has 3 major missions: (i) to support junior faculty in their endeavors to develop investigations in this area and obtain independent funding; (ii) to develop and provide technological platforms to advance autophagy research with emphasis on cellular approaches for high quality reproducible research; and (iii) to foster international collaborations through the formation of an International Council of Affiliate Members and through hosting national and international workshops and symposia. Scientifically, the AIM center is focused on autophagy and its intersections with other processes, with emphasis on both fundamental discoveries and applied translational research.
View Article and Find Full Text PDFEffector T cell migration through tissues can enable control of infection or mediate inflammatory damage. Nevertheless, the molecular mechanisms that regulate migration of effector T cells within the interstitial space of inflamed lungs are incompletely understood. Here, we show T cell migration in a mouse model of acute lung injury with two-photon imaging of intact lung tissue.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
May 2017
Inflammation is a prominent pathological feature in pulmonary arterial hypertension, as demonstrated by pulmonary vascular infiltration of inflammatory cells, including T and B lymphocytes. However, the contribution of the adaptive immune system is not well characterized in pulmonary hypertension caused by chronic hypoxia. CD4 T cells are required for initiating and maintaining inflammation, suggesting that these cells could play an important role in the pathogenesis of hypoxic pulmonary hypertension.
View Article and Find Full Text PDFMicroarrays are a powerful tool for studying differential gene expression. However, lists of many differentially expressed genes are often generated, and unraveling meaningful biological processes from the lists can be challenging. For this reason, investigators have sought to quantify the statistical probability of compiled gene sets rather than individual genes.
View Article and Find Full Text PDFEffective search strategies have evolved in many biological systems, including the immune system. T cells are key effectors of the immune response, required for clearance of pathogenic infection. T cell activation requires that T cells encounter antigen-bearing dendritic cells within lymph nodes, thus, T cell search patterns within lymph nodes may be a crucial determinant of how quickly a T cell immune response can be initiated.
View Article and Find Full Text PDFEmerging strains of influenza, such as avian H5N1 and 2009 pandemic H1N1, are more virulent than seasonal H1N1 influenza, yet the underlying mechanisms for these differences are not well understood. Subtle differences in how a given strain interacts with the immune system are likely a key factor in determining virulence. One aspect of the interaction is the ability of T cells to locate the foci of the infection in time to prevent uncontrolled expansion.
View Article and Find Full Text PDFMast cells (MCs) produce soluble mediators such as histamine and prostaglandins that are known to influence dendritic cell (DC) function by stimulating maturation and antigen processing. Whether direct cell-cell interactions are important in modulating MC/DC function is unclear. In this paper, we show that direct contact between MCs and DCs occurs and plays an important role in modulating the immune response.
View Article and Find Full Text PDFTwo-photon (2P) microscopy provides immunologists with 3D video of the movement of lymphocytes in vivo. Motility parameters extracted from these videos allow detailed analysis of lymphocyte motility in lymph nodes and peripheral tissues. However, standard parametric statistical analyses such as the Student's t-test are often used incorrectly, and fail to take into account confounds introduced by the experimental methods, potentially leading to erroneous conclusions about T cell motility.
View Article and Find Full Text PDFCell motility is a fundamental process crucial for function in many cell types, including T cells. T cell motility is critical for T cell-mediated immune responses, including initiation, activation, and effector function. While many extracellular receptors and cytoskeletal regulators have been shown to control T cell migration, relatively few signaling mediators have been identified that can modulate T cell motility.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
November 2013
T cell migration toward sites of antigen exposure is mediated by G protein signaling and is a key function in the development of immune responses. Regulators of G protein signaling (RGS) proteins modulate G protein signaling; however, their role in the regulation of adaptive immune responses has not been thoroughly explored. Herein we demonstrated abundant expression of the Gi/Gq-specific RGS3 in activated T cells, and that diminished RGS3 expression in a T cell thymoma increased cytokine-induced migration.
View Article and Find Full Text PDFAcute rejection, a common complication of lung transplantation, may promote obliterative bronchiolitis leading to graft failure in lung transplant recipients. During acute rejection episodes, CD8(+) T cells can contribute to lung epithelial injury but the mechanisms promoting and controlling CD8-mediated injury in the lung are not well understood. To study the mechanisms regulating CD8(+) T cell-mediated lung rejection, we used a transgenic model in which adoptively transferred ovalbumin (OVA)-specific cytotoxic T lymphocytes (CTL) induce lung injury in mice expressing an ovalbumin transgene in the small airway epithelium of the lungs (CC10-OVA mice).
View Article and Find Full Text PDFCD43 is a glycosylated surface protein abundantly expressed on lymphocytes. Its role in immune responses has been difficult to clearly establish, with evidence supporting both costimulatory and inhibitory functions. In addition, its contribution to disease pathogenesis remains elusive.
View Article and Find Full Text PDF