Publications by authors named "Judith Schaf"

Article Synopsis
  • * Increased levels of palmitate from the HFD activate microglia, promoting changes in their metabolism that enhance energy production through aerobic glycolysis, observable within 12 hours of HFD exposure.
  • * Microglia help process harmful fatty acids and provide protective metabolites to surrounding brain cells, showing that short-term high-fat intake can have unexpected positive effects on spatial learning and memory.
View Article and Find Full Text PDF

Tanshinone IIA (T2A) is a bioactive compound that provides promise in the treatment of glioblastoma multiforme (GBM), with a range of molecular mechanisms including the inhibition of the mechanistic target of rapamycin complex 1 (mTORC1) and the induction of autophagy. Recently, T2A has been demonstrated to function through sestrin 2 (SESN) to inhibit mTORC1 activity, but its possible impact on autophagy through this pathway has not been investigated. Here, the model system and GBM cell lines were employed to investigate the cellular role of T2A in regulating SESN to inhibit mTORC1 and activate autophagy through a GATOR2 component MIOS.

View Article and Find Full Text PDF

Glioblastomas are a highly aggressive cancer type which respond poorly to current pharmaceutical treatments, thus novel therapeutic approaches need to be investigated. One such approach involves the use of the bioactive natural product Tanshinone IIA (T2A) derived from the Chinese herb Danshen, where mechanistic insight for this anti-cancer agent is needed to validate its use. Here, we employ a tractable model system, Dictyostelium discoideum, to provide this insight.

View Article and Find Full Text PDF

Chronic high-fat feeding triggers chronic metabolic dysfunction including obesity, insulin resistance, and diabetes. How high-fat intake first triggers these pathophysiological states remains unknown. Here, we identify an acute microglial metabolic response that rapidly translates intake of high-fat diet (HFD) to a surprisingly beneficial effect on metabolism and spatial / learning memory.

View Article and Find Full Text PDF

Background And Purpose: Cannabidiol (CBD) has been shown to differentially regulate the mechanistic target of rapamycin complex 1 (mTORC1) in preclinical models of disease, where it reduces activity in models of epilepsies and cancer and increases it in models of multiple sclerosis (MS) and psychosis. Here, we investigate the effects of phytocannabinoids on mTORC1 and define a molecular mechanism.

Experimental Approach: A novel mechanism for phytocannabinoids was identified using the tractable model system, Dictyostelium discoideum.

View Article and Find Full Text PDF

Low-glucose and -insulin conditions, associated with ketogenic diets, can reduce the activity of the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, potentially leading to a range of positive medical and health-related effects. Here, we determined whether mTORC1 signaling is also a target for decanoic acid, a key component of the medium-chain triglyceride (MCT) ketogenic diet. Using a tractable model system, , we show that decanoic acid can decrease mTORC1 activity, under conditions of constant glucose and in the absence of insulin, measured by phosphorylation of eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1).

View Article and Find Full Text PDF

Developing novel compounds for the treatment of diseases remains one of the highest priorities in biomedical research, where it is critical to identify their targets and how they work at a cellular level. Most studies in this area employ mammalian models, since rodents or non-human primates are seen as a good approximation for humans. However, using mammalian models can be problematic for a range of reasons, including high genetic redundancy and the essential role for many proteins in development.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session5ab7if844t5igc2rqj5jrpjl4befh66e): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once