Publications by authors named "Judith P Armitage"

Fifty years of research has transformed our understanding of bacterial movement from one of description, based on a limited number of electron micrographs and some low-magnification studies of cells moving towards or away from chemical effectors, to probably the best understood behavioural system in biology. We have a molecular understanding of how bacteria sense and respond to changes in their environment and detailed structural insights into the workings of one of the most complex motor structures we know of. Thanks to advances in genomics we also understand how, through evolution, different species have tuned and adapted a core shared system to optimize behaviour in their specific environment.

View Article and Find Full Text PDF

Bacteria swim using membrane-spanning, electrochemical gradient-powered motors that rotate semi-rigid helical filaments. This primer provides a brief overview of the basic synthesis, structure and operation of these nanomachines. Details and variations on the basic system can be found in suggested further reading.

View Article and Find Full Text PDF

has 2 flagellar operons, one, Fla2, encoding a polar tuft that is not expressed under laboratory conditions and a second, Fla1, encoding a single randomly positioned flagellum. This single flagellum, unlike the flagella of other species studied, only rotates in a counterclockwise direction. Long periods of smooth swimming are punctuated by short stops, caused by the binding of one of 3 competing CheY homologs to the motor.

View Article and Find Full Text PDF

The bacterial cytoplasm is a very crowded environment, and changes in crowding are thought to have an impact on cellular processes including protein folding, molecular diffusion and complex formation. Previous studies on the effects of crowding have generally compared cellular activity after imposition of stress. In response to different light intensities, in unstressed conditions, Rhodobacter sphaeroides changes the number of 50-nm intracytoplasmic membrane (ICM) vesicles, with the number varying from a few to over a thousand per cell.

View Article and Find Full Text PDF

The bacterial flagellar motor is the most complex structure in the bacterial cell, driving the ion-driven rotation of the helical flagellum. The ordered expression of the regulon and the assembly of the series of interacting protein rings, spanning the inner and outer membranes to form the ∼45-50-nm protein complex, have made investigation of the structure and mechanism a major challenge since its recognition as a rotating nanomachine about 40 years ago. Painstaking molecular genetics, biochemistry, and electron microscopy revealed a tiny electric motor spinning in the bacterial membrane.

View Article and Find Full Text PDF

has two chemotaxis clusters, an -like cluster with membrane-spanning chemoreceptors and a less-understood cytoplasmic cluster. The cytoplasmic CheA is split into CheA, a kinase, and CheA, a His-domain phosphorylated by CheA and a phosphatase domain, which together phosphorylate and dephosphorylate motor-stopping CheY. In bacterial two-hybrid analysis, one major cytoplasmic chemoreceptor, TlpT, interacted with CheA, while the other, TlpC, interacted with CheA.

View Article and Find Full Text PDF

Flagellar motility is critical for surface attachment and biofilm formation in many bacteria. A key regulator of flagellar motility in and other microbes is cyclic diguanylate (c-di-GMP). High levels of this second messenger repress motility and stimulate biofilm formation.

View Article and Find Full Text PDF

Coordinating chromosome duplication and segregation with cell division is clearly critical for bacterial species with one chromosome. The precise choreography required is even more complex in species with more than one chromosome. The alpha subgroup of bacteria contains not only one of the best-studied bacterial species, , but also several species with more than one chromosome.

View Article and Find Full Text PDF

The bacterial flagellar motor is one of the few rotary motors in nature. Only ∼50 nm in diameter, this transmembrane, ion-driven nanomachine rotates a semirigid helical flagellum at speeds of up to 1300 rps. It is composed of at least 13 different proteins, in different copy numbers, resulting from the coordinated, sequential expression of more than 40 genes.

View Article and Find Full Text PDF

The bacterial cytoplasm is not a homogeneous solution of macromolecules, but rather a highly organized and compartmentalized space where the clustering and segregation of macromolecular complexes in certain cell regions confers functional efficiency. Bacterial chemoreceptors represent a versatile model system to study the subcellular localization of macromolecules, as they are present in almost all motile bacterial and archaeal species, where they tend to form highly ordered arrays that occupy distinct positions in cells. The positioning of chemoreceptor clusters, as well as their segregation mechanism on cell division, varies from species to species and probably depends on cells size, environment and speed of movement.

View Article and Find Full Text PDF

Background: Photosynthetic (PS) gene expression in Rhodobacter sphaeroides is regulated in response to changes in light and redox conditions mainly by PrrB/A, FnrL and AppA/PpsR systems. The PrrB/A and FnrL systems activate the expression of them under anaerobic conditions while the AppA/PpsR system represses them under aerobic conditions. Recently, two mathematical models have been developed for the AppA/PpsR system and demonstrated how the interaction between AppA and PpsR could lead to a phenotype in which PS genes are repressed under semi-aerobic conditions.

View Article and Find Full Text PDF

Bacterial chemosensory proteins form large hexagonal arrays. Several key features of chemotactic signaling depend on these large arrays, namely, cooperativity between receptors, sensitivity, integration of different signals, and adaptation. The best-studied arrays are the membrane-associated arrays found in most bacteria.

View Article and Find Full Text PDF

Riboswitches are structural genetic regulatory elements that directly couple the sensing of small molecules to gene expression. They have considerable potential for applications throughout synthetic biology and bio-manufacturing as they are able to sense a wide range of small molecules and regulate gene expression in response. Despite over a decade of research they have yet to reach this considerable potential as they cannot yet be treated as modular components.

View Article and Find Full Text PDF

Many bacteria use a type III secretion system (T3SS) to inject effector proteins into host cells. Selection and export of the effectors is controlled by a set of soluble proteins at the cytosolic interface of the membrane spanning type III secretion 'injectisome'. Combining fluorescence microscopy, biochemical interaction studies and fluorescence correlation spectroscopy, we show that in live Yersinia enterocolitica bacteria these soluble proteins form complexes both at the injectisome and in the cytosol.

View Article and Find Full Text PDF

The type III secretion system (T3SS) is a bacterial virulence factor expressed by dozens of Gram-negative pathogens but largely absent from commensals. The T3SS is an attractive target for antimicrobial agents that may disarm pathogenic bacteria while leaving commensal populations intact. We previously identified piericidin A1 as an inhibitor of the Ysc T3SS in .

View Article and Find Full Text PDF

Shewanella oneidensis MR-1 possesses two different stator units to drive flagellar rotation, the Na -dependent PomAB stator and the H -driven MotAB stator, the latter possibly acquired by lateral gene transfer. Although either stator can independently drive swimming through liquid, MotAB-driven motors cannot support efficient motility in structured environments or swimming under anaerobic conditions. Using ΔpomAB cells we isolated spontaneous mutants able to move through soft agar.

View Article and Find Full Text PDF

For the past two decades, the use of genetically fused fluorescent proteins (FPs) has greatly contributed to the study of chemotactic signalling in Escherichia coli including the activation of the response regulator protein CheY and its interaction with the flagellar motor. However, this approach suffers from a number of limitations, both biological and biophysical: for example, not all fusions are fully functional when fused to a bulky FP, which can have a similar molecular weight to its fused counterpart; they may interfere with the native interactions of the protein and the chromophores of FPs have low brightness and photostability and fast photobleaching rates. A recently developed technique for the electroporation of fluorescently labelled proteins in live bacteria has enabled us to bypass these limitations and study the in vivo behaviour of CheY at the single-molecule level.

View Article and Find Full Text PDF

Rhodobacter sphaeroides has emerged as a model system for studies of the complex chemotaxis pathways that are a hallmark of many non-enteric bacteria. The genome of R. sphaeroides encodes two sets of flagellar genes, fla1 and fla2, that are controlled by three different operons.

View Article and Find Full Text PDF

Unlabelled: The second messenger cyclic diguanylate (c-di-GMP) is an important regulator of motility in many bacterial species. In Pseudomonas aeruginosa, elevated levels of c-di-GMP promote biofilm formation and repress flagellum-driven swarming motility. The rotation of P.

View Article and Find Full Text PDF

Large protein complexes assemble spontaneously, yet their subunits do not prematurely form unwanted aggregates. This paradox is epitomized in the bacterial flagellar motor, a sophisticated rotary motor and sensory switch consisting of hundreds of subunits. Here we demonstrate that Escherichia coli FliG, one of the earliest-assembling flagellar motor proteins, forms ordered ring structures via domain-swap polymerization, which in other proteins has been associated with uncontrolled and deleterious protein aggregation.

View Article and Find Full Text PDF

The Type VI secretion system (T6SS) is a bacterial nanomachine that fires toxic proteins into target cells. Deployment of the T6SS represents an efficient and widespread means by which bacteria attack competitors or interact with host organisms and may be triggered by contact from an attacking neighbor cell as a defensive strategy. Here, we use the opportunist pathogen Serratia marcescens and functional fluorescent fusions of key components of the T6SS to observe different subassemblies of the machinery simultaneously and on multiple timescales in vivo.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionso53hod7o0vskgft6paf8tsaf95sr4b2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once