Several previous studies revealed that pharmaceuticals with aliphatic amine function exhibit a higher toxicity toward algae than toward other aquatic organisms. Here we investigated the pH-dependent toxicity of the five basic pharmaceuticals fluoxetine, its metabolite norfluoxetine, propranolol, lidocaine, and trimipramine. For all of them, the toxicity increased with increasing pH when aqueous effect concentrations were considered.
View Article and Find Full Text PDFEven though the environmental occurrence of pesticide transformation products is well established, ecotoxicological data for transformation products are often lacking. Therefore, it remains an open question for regulators how to handle transformation products in the process of authorization and risk assessment. Transformation products may (1) possess a similar mode of toxic action as the parent compound, (2) exhibit unexpected effects towards non-target organisms or (3) contribute to overall mixture toxicity through baseline toxicity even if the specific activity of the parent compound is lost.
View Article and Find Full Text PDFTamiflu (oseltamivir ethylester) is an antiviral agent for the treatment of influenza A and B. The pro-drug Tamiflu is converted in the human body to the pharmacologically active metabolite, oseltamivir acid, with a yield of 75%. Oseltamivir acid is indirectly photodegradable and slowly biodegradable in sewage works and sediment/water systems.
View Article and Find Full Text PDFEnviron Sci Technol
September 2009
Fluoxetine, the active ingredient of many antidepressants, was identified as specifically toxic toward algae in a quantitative structure-activity relationship (QSAR) analysis with literature data for algae, daphnia, and fish. The goal of this study was to elucidate the mode of action in algae and to evaluate the toxicity of the major human metabolites of fluoxetine using two different algae tests. The time dependence and sensitivity of thedifferenteffectendpointsyield information on the physiological mode of action.
View Article and Find Full Text PDFWe propose the use of additional physiological endpoints in the 24h growth inhibition test with synchronous cultures of Scenedesmus vacuolatus for the classification of physiological modes of toxic action of chemicals in green algae. The classification scheme is illustrated on the example of one baseline toxicant (3-nitroaniline) and five biocides (irgarol, diuron, Sea-Nine, tributyltin (TBT) and norflurazon). The well-established endpoint of inhibition of reproduction is used for an analysis of the degree of specificity of toxicity by comparing the experimental data with predictions from a quantitative structure-activity relationship (QSAR) for baseline toxicity (narcosis).
View Article and Find Full Text PDFIn the groundwater of a timber impregnation site higher concentrations of hydroxylated quinolines compared to their parent compounds quinoline and isoquinoline were found. Studying the toxicity of parent compounds and metabolites, genotoxicity was found with metabolic activation in the SOS-Chromotest and Ames fluctuation test only for quinoline. An adverse effect on algae was observed only for the parent compounds quinoline and isoquinoline, while in the Daphnia magna immobilization assay most hydroxylated quinoline derivatives showed toxicity.
View Article and Find Full Text PDFHeterocyclic aromatic hydrocarbons containing nitrogen, sulfur, or oxygen (NSO-HET), have been detected in air, soil, sewage sludge, marine environments, and freshwater sediments. Since toxicity data on this class of substances are scarce, the present study focuses on possible implications NSO-HET have for ecotoxicity (algae and daphnids) and mutagenicity (Salmonella/microsome test). A combination of bioassays and chemical-analytical quantification of the test compounds during toxicity assays should aid in determination of the hazard potential.
View Article and Find Full Text PDFThe soil and groundwater of former ordnance plants and their dumping sites have often been highly contaminated with the explosive 2,4,6-trinitrotoluene (2,4,6-TNT) leading to a potential hazard for humans and the environment. Further hazards can arise from metabolites of transformation, by-products of the manufacturing process, or incomplete combustion. This work examines the toxicity of polar nitro compounds relative to their parent compound 2,4,6-TNT using four different ecotoxicological bioassays (algae growth inhibition test, daphnids immobilization test, luminescence inhibition test, and cell growth inhibition test), three genotoxicological assays (umu test, NM2009 test, and SOS Chromotest), and the Ames fluctuation test for detection of mutagenicity.
View Article and Find Full Text PDF