Publications by authors named "Judith Mylius"

During deep anesthesia, the electroencephalographic (EEG) signal of the brain alternates between bursts of activity and periods of relative silence (suppressions). The origin of burst-suppression and its distribution across the brain remain matters of debate. In this work, we used functional magnetic resonance imaging (fMRI) to map the brain areas involved in anesthesia-induced burst-suppression across four mammalian species: humans, long-tailed macaques, common marmosets, and rats.

View Article and Find Full Text PDF

The aim of this study was to establish a feasible and robust magnetic resonance imaging protocol for the quantitative assessment of cardiac function in marmosets and to present normal values of cardiac function across different ages from young adult, middle-aged, to very old clinically healthy animals. Cardiac MRI of 33 anesthetized marmosets at the age of 2-15 years was performed at 9.4 T using IntraGate-FLASH that operates without any ECG-triggering and breath holding.

View Article and Find Full Text PDF

Magnetic resonance imaging (MRI) at ultra-high fields (UHF), such as 7 T, provides an enhanced signal-to-noise ratio and has led to unprecedented high-resolution anatomic images and brain activation maps. Although a variety of radio frequency (RF) coil architectures have been developed for imaging at UHF conditions, they usually are specialized for small volumes of interests (VoI). So far, whole-body coil resonators are not available for commercial UHF human whole-body MRI systems.

View Article and Find Full Text PDF

Background: Since the mesocortical dopaminergic system of rodents has several differences to that found in primate species, including humans, there is the need for more exhaustively studying causative relationships between activation/stimulation of the ventral tegmental area (VTA) and substantia nigra (SN) and behavior in monkeys.

Objective: To gain causative relationships between VTA/SN stimulation and behavior, we investigated whether monkeys perform audiovisual (AV) tasks using brain stimulation reward (BSR) as the reinforcer, and how reward intensity affects performance during self-stimulation.

Methods: Monkeys were required to touch a bar freely when self-stimulating or when instructed by an AV stimulus, to receive BSR.

View Article and Find Full Text PDF

Introduction: Neuroimaging of macaques at ultra-high field (UHF) is usually conducted by combining a volume coil for transmit (Tx) and a phased array coil for receive (Rx) tightly enclosing the monkey's head. Good results have been achieved using vertical or horizontal magnets with implanted or near-surface coils. An alternative and less costly approach, the travelling-wave (TW) excitation concept, may offer more flexible experimental setups on human whole-body UHF magnetic resonance imaging (MRI) systems, which are now more widely available.

View Article and Find Full Text PDF

This study shows that ongoing electrical stimulation of the dopaminergic ventral midbrain can modify neuronal activity in the auditory cortex of awake primates for several seconds. This was reflected in a decrease of the spontaneous firing and in a bidirectional modification of the power of auditory evoked potentials. We consider that both effects are due to an increase in the dopamine tone in auditory cortex induced by the electrical stimulation.

View Article and Find Full Text PDF

Motivated by the increasing evidence that auditory cortex is under control of dopaminergic cell structures of the ventral midbrain, we studied how the ventral tegmental area and substantia nigra affect neuronal activity in auditory cortex. We electrically stimulated 567 deep brain sites in total within and in the vicinity of the two dopaminergic ventral midbrain structures and at the same time, recorded local field potentials and neuronal discharges in cortex. In experiments conducted on three awake macaque monkeys, we found that electrical stimulation of the dopaminergic ventral midbrain resulted in short-latency (~35 ms) phasic activations in all cortical layers of auditory cortex.

View Article and Find Full Text PDF

The response of neurons in the Red Nucleus pars magnocellularis (RNm) to both tone bursts and electrical stimulation were observed in three cynomolgus monkeys (Macaca fascicularis), in a series of studies primarily designed to characterize the influence of the dopaminergic ventral midbrain on auditory processing. Compared to its role in motor behavior, little is known about the sensory response properties of neurons in the red nucleus (RN); particularly those concerning the auditory modality. Sites in the RN were recognized by observing electrically evoked body movements characteristic for this deep brain structure.

View Article and Find Full Text PDF

We investigated the frequency-related topography of connections of the primary auditory cortical field (AI) in the Mongolian gerbil with subcortical structures of the auditory system by means of the axonal transport of two bidirectional tracers, which were simultaneously injected into regions of AI with different best frequencies (BFs). We found topographic, most likely frequency-matched (tonotopic) connections as well as non-topographic (non-tonotopic) connections. AI projects in a tonotopic way to the ipsilateral ventral (MGv) and dorsal divisions (MGd) of the medial geniculate body (MGB), the reticular thalamic nucleus and dorsal nucleus of the lateral lemniscus, and the ipsi- and contralateral dorsal cortex of the inferior colliculus (IC) and central nucleus of the IC.

View Article and Find Full Text PDF

Object: Ultra-high field (UHF) neuroimaging is usually conducted with volume transmit (Tx) and phased array receive (Rx) coils, both tightly enclosing the object. The travelling-wave (TW) concept allows a remote excitation offering more flexible experimental setups. To investigate the feasibility of primate MRI in horizontal UHF MRI, we first compared the distribution of the electromagnetic fields in an oil phantom and then verified the concept with an in vivo experiment.

View Article and Find Full Text PDF

By means of the Golgi-Cox and Nissl methods we investigated the cyto- and fiberarchitecture as well as the morphology of neurons in the subcortical auditory structures of the Mongolian gerbil (Meriones unguiculatus), a frequently used animal model in auditory neuroscience. We describe the divisions and subdivisions of the auditory thalamus including the medial geniculate body, suprageniculate nucleus, and reticular thalamic nucleus, as well as of the inferior colliculi, nuclei of the lateral lemniscus, superior olivary complex, and cochlear nuclear complex. In this study, we 1) confirm previous results about the organization of the gerbil's subcortical auditory pathway using other anatomical staining methods (e.

View Article and Find Full Text PDF

Perceptually ambiguous stimuli are useful for testing psychological and neuronal models of perceptual organization, e.g. for studying brain processes that underlie sequential segregation and integration.

View Article and Find Full Text PDF