The purpose of this work was to compare the pharmacokinetics (PK) and tissue distribution of [14C]fluasterone following intravenous (iv), subcutaneous (sc) and oral (po) administration in male Beagle dogs. The main goal of the investigation was to discover if non-oral routes would alter parameters observed in this study following the administration of [14C]fluasterone. The oral formulation had a lower bioavailability (47%) compared to the sc formulation (84%).
View Article and Find Full Text PDFThe objective of this research was the identification of the metabolic profile of fluasterone, a synthetic derivative of dehydroepiandrosterone, in dogs treated orally or subcutaneously with [4-(14)C]fluasterone. Separation and characterization techniques used to identify the principal metabolites of fluasterone in urine and feces included high-performance liquid chromatography (HPLC), liquid scintillation spectrometry, HPLC/tandem mass spectrometry, and NMR. In urine, the majority of the radioactivity was present as two components that had apparent molecular weights consistent with their tentative identification as monoglucuronide conjugates of 4alpha-hydroxy-16alpha-fluoro-5-androsten-17beta-ol and X(alpha or beta)-4alpha-dihydroxy-16alpha-fluoro-5-androsten-17beta-ol.
View Article and Find Full Text PDFBackground: Soy isoflavones are potential cancer chemoprevention treatments.
Objective: We conducted safety studies of purified unconjugated genistein, daidzein, and glycitein, and defined pharmacokinetic parameters for their absorption and metabolism.
Design: Thirty healthy men ingested a single dose of 1 of 2 isoflavone preparations purified from soy.