Publications by authors named "Judith M Duenas-Jimenez"

Stroke is the third cause of death worldwide and a health problem, and current therapy continues to be very poor. It promotes an alteration associated with excitotoxicity, oxidative stress, and inflammatory processes, exacerbating the damage in the brain. Although cortical areas are the most affected by stroke, the hippocampus can be impacted in the long term through the pathways it connects with these areas, which are associated further with motor alterations; this encourages the search for new therapeutic approaches.

View Article and Find Full Text PDF

This study investigates how traumatic injuries alter joint movements in the ankle and foot. We used a brain injury model in rats, focusing on the hippocampus between the CA1 and dentate gyrus. We assessed the dissimilarity factor (DF) and vertical displacement (VD) of the ankle and metatarsus joints before and after the hippocampal lesion.

View Article and Find Full Text PDF

Traumatic brain injury has been the leading cause of mortality and morbidity in human beings. One of the most susceptible structures to this damage is the hippocampus due to cellular and synaptic loss and impaired hippocampal connectivity to the brain, brain stem, and spinal cord. Thus, hippocampal damage in rodents using a stereotaxic device could be an adequate method to study a precise lesion from CA1 to the dentate gyrus structures.

View Article and Find Full Text PDF

Glioblastoma Multiforme (GBM) is a tumor that infiltrates several brain structures. GBM is associated with abnormal motor activities resulting in impaired mobility, producing a loss of functional motor independence. We used a GBM xenograft implanted in the striatum to analyze the changes in Y (vertical) and X (horizontal) axis displacement of the metatarsus, ankle, and knee.

View Article and Find Full Text PDF

Glioblastoma is the most frequent primary tumor in the human brain. Glioblastoma cells express aromatase and the classic estrogen receptors ERα and ERβ and can produce estrogens that promote tumor growth. The membrane G protein-coupled estrogen receptor (GPER) also plays a significant role in numerous types of cancer; its participation in glioblastoma tumor development is not entirely known.

View Article and Find Full Text PDF

Spontaneous interneuron activity plays a critical role in developing neuronal networks. Discharges conducted antidromically along the dorsal root (DR) precede those from the ventral root's (VR) motoneurons. This work studied whether spinal interneurons project axons into the neonate's dorsal roots.

View Article and Find Full Text PDF

() is the causal agent of toxoplasmosis, which produces damage in the central nervous system (CNS). -CNS interaction is critical for the development of disease symptoms. can form cysts in the CNS; however, neurons are more resistant to this infection than astrocytes.

View Article and Find Full Text PDF

Toxoplasmosis is a disease, which was discovered in 1908, caused by the intracellular parasite . infects neuronal, glial, and muscle cells, and chronic infections are characterized by the presence of cysts, in the brain and muscle cells, formed by bradyzoites. is capable of synthesizing L-DOPA, a precursor of dopamine.

View Article and Find Full Text PDF

Locomotion speed changes appear following hippocampal injury. We used a hippocampal penetrating brain injury mouse model to analyze other kinematic changes. We found a significant decrease in locomotion speed in both open-field and tunnel walk tests.

View Article and Find Full Text PDF

: The spinal cord's central pattern generators (CPGs) have been explained by the symmetrical half-center hypothesis, the bursts generator, computational models, and more recently by connectome circuits. Asymmetrical models, at odds with the half-center paradigm, are composed of extensor and flexor CPG modules. Other models include not only flexor and extensor motoneurons but also motoneuron pools controlling biarticular muscles.

View Article and Find Full Text PDF

In brain cortex-ablated cats (BCAC), hind limb motoneurons activity patterns were studied during fictive locomotion (FL) or fictive scratching (FS) induced by pinna stimulation. In order to study motoneurons excitability: heteronymous monosynaptic reflex (HeMR), intracellular recording, and individual Ia afferent fiber antidromic activity (AA) were analyzed. The intraspinal cord microinjections of serotonin or glutamic acid effects were made to study their influence in FL or FS During FS, HeMR amplitude in extensor and bifunctional motoneurons increased prior to or during the respective electroneurogram (ENG).

View Article and Find Full Text PDF

Periodontitis is an infectious and inflammatory disease associated with significant loss of alveolar crest and soft tissue attached to the teeth. Chitosan and hydroxyapatite are biomaterials used for bone tissue repair because of their biodegradability and biocompatibility in nature. The present study evaluated the effects of chitosan (CH) in combination with hydroxyapatite (HAP) to promote alveolar bone growth.

View Article and Find Full Text PDF

The current decerebration procedures discard the role of the thalamus in the motor control and decortication only rules out the brain cortex part, leaving a gap between the brain cortex and the subthalamic motor regions. In here we define a new preparation denominated Brain Cortex-Ablated Cat (BCAC), in which the frontal and parietal brain cortices as well as the central white matter beneath them were removed, this decerebration process may be considered as suprathalamic, since the thalamus remained intact. To characterize this preparation cat hindlimb electromyograms (EMG), kinematics and cutaneous reflexes (CR) produced by electrical stimulation of sural (SU) or saphenous (SAPH) nerves were analyzed during locomotion in intact and in BCAC.

View Article and Find Full Text PDF

We performed experiments in cats with a spinal cord penetrating hemisection at T13-L1 level, with and without tamoxifen treatment. The results showed that the numbers of the ipsilateral and contralateral ventral horn neurons were reduced to less than half in the nontreated animals compared with the treated ones. Also, axons myelin sheet was preserved to almost normal values in treated cats.

View Article and Find Full Text PDF

Object: Transection of peripheral nerves produces loss of sensory and/or motor function. After complete nerve cutting, the distal and proximal segment ends retract, but if both ends are bridged with unaltered chitosan, progesterone-impregnated chitosan, or silicone tubes, an axonal repair process begins. Progesterone promotes nerve repair and has neuroprotective effects thwarting regulation of neuron survival, inflammation, and edema.

View Article and Find Full Text PDF

Background: The anti-inflammatory effect of the cerebral dopamine neurotrophic factor (CDNF) was shown recently in primary glial cell cultures, yet such effect remains unknown both in vivo and in 6-hydroxydopamine (6-OHDA) models of Parkinson's disease (PD). We addressed this issue by performing an intranigral transfection of the human CDNF (hCDNF) gene in the critical period of inflammation after a single intrastriatal 6-OHDA injection in the rat.

Methods: At day 15 after lesion, the plasmids p3xNBRE-hCDNF or p3xNBRE-EGFP, coding for enhanced green florescent protein (EGFP), were transfected into the rat substantia nigra (SN) using neurotensin (NTS)-polyplex.

View Article and Find Full Text PDF

Background And Aims: T. gondii is a causal agent of encephalitis in immunocompromised patients. Pyrimethamine (PYR) has been the treatment of choice for toxoplasmosis.

View Article and Find Full Text PDF

Glioma cell line C6, transfected with tyrosine hydroxylase (TH) cDNA under the control of the glial fibrillary acid protein promoter (C6-THA cells), elicited a reduction in the apomorphine-induced turning behavior when they are implanted in Parkinson's disease models. Nevertheless, dopamine (Da) release has not been explicitly demonstrated nor has a possible mechanism of release been implicated. In this study, the in vitro Da release by C6 and C6-THA cells after chemical stimulation with KCl or glutamate was quantified using HPLC.

View Article and Find Full Text PDF

Pig neural cells express glycoproteins with sialylated N-linked oligosaccharide chains (SNOC) which are used by the porcine rubulavirus (PoRv) as receptors. Pig neuronal or glial cell cultures were employed to investigate (a) whether PoRv infects such cells using a molecule expressing SNOC, and (b) the role of viral envelope glycoproteins in establishing the infection. Enriched neuronal or glial cell cultures were exposed to PoRv and infection was detected immunocytochemically.

View Article and Find Full Text PDF