The biological relevance and dynamics of mRNA modifications have been extensively studied; however, whether rRNA modifications are dynamically regulated, and under which conditions, remains unclear. Here, we systematically characterize bacterial rRNA modifications upon exposure to diverse antibiotics using native RNA nanopore sequencing. To identify significant rRNA modification changes, we develop NanoConsensus, a novel pipeline that is robust across RNA modification types, stoichiometries and coverage, with very low false positive rates, outperforming all individual algorithms tested.
View Article and Find Full Text PDFRecent advances have highlighted the significant roles of post-transcriptional modifications in rRNA in various cancers. Evidence suggests that dysregulation of rRNA modifications acts as a common denominator in cancer development, with alterations in these modifications conferring competitive advantages to cancer cells. Specifically, rRNA modifications modulate protein synthesis and favor the specialized translation of oncogenic programs, thereby contributing to the formation of a protumorigenic proteome in cancer cells.
View Article and Find Full Text PDFTumour progression and therapy tolerance are highly regulated and complex processes largely dependent on the plasticity of cancer cells and their capacity to respond to stress. The higher plasticity of cancer cells highlights the need for identifying targetable molecular pathways that challenge cancer cell survival. Here, we show that N-guanosine methylation (mG) of tRNAs, mediated by METTL1, regulates survival to stress conditions in cancer cells.
View Article and Find Full Text PDFNewly growing evidence highlights the essential role that epitranscriptomic marks play in the development of many cancers; however, little is known about the role and implications of altered epitranscriptome deposition in prostate cancer. Here, we show that the transfer RNA N-methylguanosine (mG) transferase METTL1 is highly expressed in primary and advanced prostate tumours. Mechanistically, we find that METTL1 depletion causes the loss of mG tRNA methylation and promotes the biogenesis of a novel class of small non-coding RNAs derived from 5'tRNA fragments.
View Article and Find Full Text PDFThe initiation of prostate cancer has been long associated with DNA copy-number alterations, the loss of specific chromosomal regions and gene fusions, and driver mutations, especially those of the Androgen Receptor. Non-mutational events, particularly DNA and RNA epigenetic dysregulation, are emerging as key players in tumorigenesis. In this review we summarize the molecular changes linked to epigenetic and epitranscriptomic dysregulation in prostate cancer and the role that alterations to DNA and RNA modifications play in the initiation and progression of prostate cancer.
View Article and Find Full Text PDFOrganotypic cultures of tissue slices have been successfully established in lung, prostate, colon, gastric and breast cancer among other malignancies, but until now an ex vivo model based on tissue slices has not been established for uterine leiomyoma. In the present study, we describe a method for culturing tumour slides onto an alginate scaffold. Morphological integrity of tissue slices was maintained for up to 7 days of culture, with cells expressing desmin, estrogen and progesterone receptors.
View Article and Find Full Text PDFThe term small non-coding RNAs (ncRNAs) refers to all those RNAs that even without encoding for a protein, can play important functional roles. Transfer RNA and ribosomal RNA-derived fragments (tRFs and rRFs, respectively) are an emerging class of ncRNAs originally considered as simple degradation products, which though play important roles in stress responses, signalling, or gene expression. They control all levels of gene expression regulating transcription and translation and affecting RNA processing and maturation.
View Article and Find Full Text PDFIn the present work, a comparative study of 5-FdUrd, thy-, and metabolic in vivo labeling methods for plasmid and chromosomal DNA in E. coli DH5alpha cells was performed in order to achieve the best thymidine substitution method by 5-BrdUrd. According to the colorimetric immunoenzymatic results, we found that the minimal detectable labeled DNA (MDLD) was 312pg with the 5-FdUrd and thy- methods for 5-BrdUrd labeled plasmid DNA.
View Article and Find Full Text PDF